案例研究:利用 GenAI 构建基于人工智能的替代物和回归因子,为聚变能科学中的射频加热建模

E. Wes Bethel, Vianna Cramer, Alexander del Rio, Lothar Narins, Chris Pestano, Satvik Verma, Erick Arias, Nicola Bertelli, Talita Perciano, Syun'ichi Shiraiwa, Álvaro Sánchez Villar, Greg Wallace, John C. Wright
{"title":"案例研究:利用 GenAI 构建基于人工智能的替代物和回归因子,为聚变能科学中的射频加热建模","authors":"E. Wes Bethel, Vianna Cramer, Alexander del Rio, Lothar Narins, Chris Pestano, Satvik Verma, Erick Arias, Nicola Bertelli, Talita Perciano, Syun'ichi Shiraiwa, Álvaro Sánchez Villar, Greg Wallace, John C. Wright","doi":"arxiv-2409.06122","DOIUrl":null,"url":null,"abstract":"This work presents a detailed case study on using Generative AI (GenAI) to\ndevelop AI surrogates for simulation models in fusion energy research. The\nscope includes the methodology, implementation, and results of using GenAI to\nassist in model development and optimization, comparing these results with\nprevious manually developed models.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio Frequency Heating in Fusion Energy Science\",\"authors\":\"E. Wes Bethel, Vianna Cramer, Alexander del Rio, Lothar Narins, Chris Pestano, Satvik Verma, Erick Arias, Nicola Bertelli, Talita Perciano, Syun'ichi Shiraiwa, Álvaro Sánchez Villar, Greg Wallace, John C. Wright\",\"doi\":\"arxiv-2409.06122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a detailed case study on using Generative AI (GenAI) to\\ndevelop AI surrogates for simulation models in fusion energy research. The\\nscope includes the methodology, implementation, and results of using GenAI to\\nassist in model development and optimization, comparing these results with\\nprevious manually developed models.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了在聚变能源研究中使用生成式人工智能(GenAI)为仿真模型开发人工智能代理的详细案例研究。研究范围包括使用 GenAI 协助模型开发和优化的方法、实施和结果,并将这些结果与之前人工开发的模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Case Study: Leveraging GenAI to Build AI-based Surrogates and Regressors for Modeling Radio Frequency Heating in Fusion Energy Science
This work presents a detailed case study on using Generative AI (GenAI) to develop AI surrogates for simulation models in fusion energy research. The scope includes the methodology, implementation, and results of using GenAI to assist in model development and optimization, comparing these results with previous manually developed models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1