在真相发现定量双极论证框架中应用归因解释

Xiang Yin, Nico Potyka, Francesca Toni
{"title":"在真相发现定量双极论证框架中应用归因解释","authors":"Xiang Yin, Nico Potyka, Francesca Toni","doi":"arxiv-2409.05831","DOIUrl":null,"url":null,"abstract":"Explaining the strength of arguments under gradual semantics is receiving\nincreasing attention. For example, various studies in the literature offer\nexplanations by computing the attribution scores of arguments or edges in\nQuantitative Bipolar Argumentation Frameworks (QBAFs). These explanations,\nknown as Argument Attribution Explanations (AAEs) and Relation Attribution\nExplanations (RAEs), commonly employ removal-based and Shapley-based techniques\nfor computing the attribution scores. While AAEs and RAEs have proven useful in\nseveral applications with acyclic QBAFs, they remain largely unexplored for\ncyclic QBAFs. Furthermore, existing applications tend to focus solely on either\nAAEs or RAEs, but do not compare them directly. In this paper, we apply both\nAAEs and RAEs, to Truth Discovery QBAFs (TD-QBAFs), which assess the\ntrustworthiness of sources (e.g., websites) and their claims (e.g., the\nseverity of a virus), and feature complex cycles. We find that both AAEs and\nRAEs can provide interesting explanations and can give non-trivial and\nsurprising insights.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Applying Attribution Explanations in Truth-Discovery Quantitative Bipolar Argumentation Frameworks\",\"authors\":\"Xiang Yin, Nico Potyka, Francesca Toni\",\"doi\":\"arxiv-2409.05831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Explaining the strength of arguments under gradual semantics is receiving\\nincreasing attention. For example, various studies in the literature offer\\nexplanations by computing the attribution scores of arguments or edges in\\nQuantitative Bipolar Argumentation Frameworks (QBAFs). These explanations,\\nknown as Argument Attribution Explanations (AAEs) and Relation Attribution\\nExplanations (RAEs), commonly employ removal-based and Shapley-based techniques\\nfor computing the attribution scores. While AAEs and RAEs have proven useful in\\nseveral applications with acyclic QBAFs, they remain largely unexplored for\\ncyclic QBAFs. Furthermore, existing applications tend to focus solely on either\\nAAEs or RAEs, but do not compare them directly. In this paper, we apply both\\nAAEs and RAEs, to Truth Discovery QBAFs (TD-QBAFs), which assess the\\ntrustworthiness of sources (e.g., websites) and their claims (e.g., the\\nseverity of a virus), and feature complex cycles. We find that both AAEs and\\nRAEs can provide interesting explanations and can give non-trivial and\\nsurprising insights.\",\"PeriodicalId\":501479,\"journal\":{\"name\":\"arXiv - CS - Artificial Intelligence\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05831\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

解释渐进语义下的论据强度正受到越来越多的关注。例如,文献中的各种研究通过计算定量双极论证框架(QBAFs)中论据或边缘的归因得分来提供解释。这些解释被称为论据归因解释(AAE)和关系归因解释(RAE),通常采用基于移除和基于 Shapley 的技术来计算归因分数。虽然 AAE 和 RAE 在非循环 QBAF 的多个应用中被证明是有用的,但它们在循环 QBAF 中的应用在很大程度上仍未被开发。此外,现有的应用往往只关注 AAE 或 RAE,而不对它们进行直接比较。在本文中,我们将 AAE 和 RAE 都应用于真相发现 QBAFs(TD-QBAFs),该 QBAFs 评估来源(如网站)及其声明(如病毒的严重性)的可信度,并以复杂循环为特征。我们发现 AAE 和RAE 都能提供有趣的解释,并能给出非同一般的惊人见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying Attribution Explanations in Truth-Discovery Quantitative Bipolar Argumentation Frameworks
Explaining the strength of arguments under gradual semantics is receiving increasing attention. For example, various studies in the literature offer explanations by computing the attribution scores of arguments or edges in Quantitative Bipolar Argumentation Frameworks (QBAFs). These explanations, known as Argument Attribution Explanations (AAEs) and Relation Attribution Explanations (RAEs), commonly employ removal-based and Shapley-based techniques for computing the attribution scores. While AAEs and RAEs have proven useful in several applications with acyclic QBAFs, they remain largely unexplored for cyclic QBAFs. Furthermore, existing applications tend to focus solely on either AAEs or RAEs, but do not compare them directly. In this paper, we apply both AAEs and RAEs, to Truth Discovery QBAFs (TD-QBAFs), which assess the trustworthiness of sources (e.g., websites) and their claims (e.g., the severity of a virus), and feature complex cycles. We find that both AAEs and RAEs can provide interesting explanations and can give non-trivial and surprising insights.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1