合理化缺陷仿生铈:基于纳米酶的潜在 "特洛伊木马 "平台的体外演示:利用光氧化还原活性进行微创治疗

Sayoni Sarkar, Diksha Malhotra, Monalisha Debnath, Gopal C. Kundu, Rohit Srivastava, Ajit R. Kulkarni
{"title":"合理化缺陷仿生铈:基于纳米酶的潜在 \"特洛伊木马 \"平台的体外演示:利用光氧化还原活性进行微创治疗","authors":"Sayoni Sarkar, Diksha Malhotra, Monalisha Debnath, Gopal C. Kundu, Rohit Srivastava, Ajit R. Kulkarni","doi":"10.1002/admt.202400556","DOIUrl":null,"url":null,"abstract":"Semiconductor nanostructures with surface defect‐mediated chemistry have garnered pronounced interest due to their exceptional photo‐induced intracellular bio‐catalytic (enzyme‐mimicking) responses. However, designing defective nanozymes with pH‐responsive multi‐bio‐catalytic functions without any dopants is challenging. Herein, oxygen‐deficient “trojan horse‐like” folate‐functionalized, L‐arginine‐coated ceria (FA‐L‐arg‐CeO<jats:sub>2</jats:sub>) nanozymes with synergistic multi‐enzyme‐mimicking and anti‐cancer potential are introduced. Intrinsic surface oxygen vacancies (V<jats:sub>O</jats:sub><jats:sup>●</jats:sup>) are strategically created in the nanozymes under kinetically favorable synthesis conditions. Increased surface V<jats:sub>O</jats:sub><jats:sup>●</jats:sup> promotes band structure reconstruction and amplified photochemical‐response efficacy under single laser irradiation (808 nm), outperforming the defect‐free commercial nano‐CeO<jats:sub>2</jats:sub> in rapid anti‐tumorigenic activities. Through folate receptor‐mediated endocytosis, these biostable nanozymes localized in MDA‐MB‐231 cells (84% in 48 h) and demonstrated NIR‐accelerated enzymatic functions depending on the pH of the biological milieu. The reduced band gap energy facilitated effective electron‐hole separation, up‐regulating in vitro photo‐redox reactions that impart exceptional therapeutic potential and inhibit 62% cell metastasis within only 12 h. By perturbing intratumoural redox homeostasis, V<jats:sub>O</jats:sub><jats:sup>●</jats:sup>‐rich FA‐L‐arg‐CeO<jats:sub>2</jats:sub> nanozymes unanimously killed 86% of MDA‐MB‐231 cancer cells while preferentially shielding benign L929 cells. Transcending beyond conventional drug‐loaded or dopant‐incorporated‐CeO<jats:sub>2</jats:sub> nanoplatforms, these defective multi‐modal nanozymes unravel a new avenue for developing smart, low‐cost, bio‐active agents with enhanced efficacy and bio‐safety.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rationalizing Defective Biomimetic Ceria: In Vitro Demonstration of a Potential “Trojan Horse” Nanozyme Based‐Platform Leveraging Photo‐Redox Activities for Minimally Invasive Therapy\",\"authors\":\"Sayoni Sarkar, Diksha Malhotra, Monalisha Debnath, Gopal C. Kundu, Rohit Srivastava, Ajit R. Kulkarni\",\"doi\":\"10.1002/admt.202400556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semiconductor nanostructures with surface defect‐mediated chemistry have garnered pronounced interest due to their exceptional photo‐induced intracellular bio‐catalytic (enzyme‐mimicking) responses. However, designing defective nanozymes with pH‐responsive multi‐bio‐catalytic functions without any dopants is challenging. Herein, oxygen‐deficient “trojan horse‐like” folate‐functionalized, L‐arginine‐coated ceria (FA‐L‐arg‐CeO<jats:sub>2</jats:sub>) nanozymes with synergistic multi‐enzyme‐mimicking and anti‐cancer potential are introduced. Intrinsic surface oxygen vacancies (V<jats:sub>O</jats:sub><jats:sup>●</jats:sup>) are strategically created in the nanozymes under kinetically favorable synthesis conditions. Increased surface V<jats:sub>O</jats:sub><jats:sup>●</jats:sup> promotes band structure reconstruction and amplified photochemical‐response efficacy under single laser irradiation (808 nm), outperforming the defect‐free commercial nano‐CeO<jats:sub>2</jats:sub> in rapid anti‐tumorigenic activities. Through folate receptor‐mediated endocytosis, these biostable nanozymes localized in MDA‐MB‐231 cells (84% in 48 h) and demonstrated NIR‐accelerated enzymatic functions depending on the pH of the biological milieu. The reduced band gap energy facilitated effective electron‐hole separation, up‐regulating in vitro photo‐redox reactions that impart exceptional therapeutic potential and inhibit 62% cell metastasis within only 12 h. By perturbing intratumoural redox homeostasis, V<jats:sub>O</jats:sub><jats:sup>●</jats:sup>‐rich FA‐L‐arg‐CeO<jats:sub>2</jats:sub> nanozymes unanimously killed 86% of MDA‐MB‐231 cancer cells while preferentially shielding benign L929 cells. Transcending beyond conventional drug‐loaded or dopant‐incorporated‐CeO<jats:sub>2</jats:sub> nanoplatforms, these defective multi‐modal nanozymes unravel a new avenue for developing smart, low‐cost, bio‐active agents with enhanced efficacy and bio‐safety.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202400556\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有表面缺陷介导化学性质的半导体纳米结构因其卓越的光诱导细胞内生物催化(模拟酶)反应而受到广泛关注。然而,要在不使用任何掺杂剂的情况下设计出具有 pH 响应的多重生物催化功能的缺陷纳米分子,却极具挑战性。本文介绍了具有协同多酶模拟和抗癌潜力的缺氧 "特洛伊木马式 "叶酸功能化、L-精氨酸涂层陶瓷(FA-L-arg-CeO2)纳米酶。在动力学上有利的合成条件下,内在表面氧空位(VO●)被策略性地制造在纳米酶中。在单次激光照射(808 纳米)下,增加的表面氧空位●促进了带状结构的重构和光化学响应功效的放大,在快速抗肿瘤活性方面优于无缺陷的商用纳米二氧化硒。通过叶酸受体介导的内吞作用,这些生物稳定的纳米酶在 MDA-MB-231 细胞中定位(48 小时内定位率达 84%),并根据生物环境的 pH 值显示出近红外加速酶功能。通过扰乱瘤内氧化还原平衡,富含 VO● 的 FA-L-arg-CeO2 纳米酶一致杀死了 86% 的 MDA-MB-231 癌细胞,同时优先保护了良性 L929 细胞。这些有缺陷的多模态纳米分子超越了传统的药物负载或掺杂-CeO2纳米平台,为开发具有更高的功效和生物安全性的智能、低成本、生物活性制剂开辟了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rationalizing Defective Biomimetic Ceria: In Vitro Demonstration of a Potential “Trojan Horse” Nanozyme Based‐Platform Leveraging Photo‐Redox Activities for Minimally Invasive Therapy
Semiconductor nanostructures with surface defect‐mediated chemistry have garnered pronounced interest due to their exceptional photo‐induced intracellular bio‐catalytic (enzyme‐mimicking) responses. However, designing defective nanozymes with pH‐responsive multi‐bio‐catalytic functions without any dopants is challenging. Herein, oxygen‐deficient “trojan horse‐like” folate‐functionalized, L‐arginine‐coated ceria (FA‐L‐arg‐CeO2) nanozymes with synergistic multi‐enzyme‐mimicking and anti‐cancer potential are introduced. Intrinsic surface oxygen vacancies (VO) are strategically created in the nanozymes under kinetically favorable synthesis conditions. Increased surface VO promotes band structure reconstruction and amplified photochemical‐response efficacy under single laser irradiation (808 nm), outperforming the defect‐free commercial nano‐CeO2 in rapid anti‐tumorigenic activities. Through folate receptor‐mediated endocytosis, these biostable nanozymes localized in MDA‐MB‐231 cells (84% in 48 h) and demonstrated NIR‐accelerated enzymatic functions depending on the pH of the biological milieu. The reduced band gap energy facilitated effective electron‐hole separation, up‐regulating in vitro photo‐redox reactions that impart exceptional therapeutic potential and inhibit 62% cell metastasis within only 12 h. By perturbing intratumoural redox homeostasis, VO‐rich FA‐L‐arg‐CeO2 nanozymes unanimously killed 86% of MDA‐MB‐231 cancer cells while preferentially shielding benign L929 cells. Transcending beyond conventional drug‐loaded or dopant‐incorporated‐CeO2 nanoplatforms, these defective multi‐modal nanozymes unravel a new avenue for developing smart, low‐cost, bio‐active agents with enhanced efficacy and bio‐safety.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1