联盟学习中的零知识证明可信模型聚合

IF 5.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS IEEE Transactions on Parallel and Distributed Systems Pub Date : 2024-09-06 DOI:10.1109/TPDS.2024.3455762
Renwen Ma;Kai Hwang;Mo Li;Yiming Miao
{"title":"联盟学习中的零知识证明可信模型聚合","authors":"Renwen Ma;Kai Hwang;Mo Li;Yiming Miao","doi":"10.1109/TPDS.2024.3455762","DOIUrl":null,"url":null,"abstract":"This paper proposes a new global model aggregation method based on using zero-knowledge federated learning (ZKFL). The purpose is to secure horizontal or P2P federated machine learning systems with shorter aggregation times, higher model accuracy, and lower system costs. We use a model parameter-sharing Chord overlay network among all client hosts. The overlay guarantees a trusted sharing of zero-knowledge proofs for aggregation integrity, even under malicious Byzantine attacks. We tested over popular datasets, Fashion-MNIST and CIFAR10, to prove the new system protection concept. Our benchmark experiments validate the claimed advantages of the ZKFL scheme in all objective functions. Our aggregation method can be applied to secure both rank-based and similarity-based aggregation schemes. For a large system with over 200 clients, our system takes only 3 seconds to yield high-precision global machine models under the ALIE attacks with the Fashion-MNIST dataset. We have achieved up to 85% model accuracy, compared to only 3%\n<inline-formula><tex-math>$\\sim$</tex-math></inline-formula>\n45% accuracy observed with federated schemes without protection. Moreover, our method demands a low memory overhead for handling zero-knowledge proofs as the system scales greatly to a larger number of client nodes.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trusted Model Aggregation With Zero-Knowledge Proofs in Federated Learning\",\"authors\":\"Renwen Ma;Kai Hwang;Mo Li;Yiming Miao\",\"doi\":\"10.1109/TPDS.2024.3455762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new global model aggregation method based on using zero-knowledge federated learning (ZKFL). The purpose is to secure horizontal or P2P federated machine learning systems with shorter aggregation times, higher model accuracy, and lower system costs. We use a model parameter-sharing Chord overlay network among all client hosts. The overlay guarantees a trusted sharing of zero-knowledge proofs for aggregation integrity, even under malicious Byzantine attacks. We tested over popular datasets, Fashion-MNIST and CIFAR10, to prove the new system protection concept. Our benchmark experiments validate the claimed advantages of the ZKFL scheme in all objective functions. Our aggregation method can be applied to secure both rank-based and similarity-based aggregation schemes. For a large system with over 200 clients, our system takes only 3 seconds to yield high-precision global machine models under the ALIE attacks with the Fashion-MNIST dataset. We have achieved up to 85% model accuracy, compared to only 3%\\n<inline-formula><tex-math>$\\\\sim$</tex-math></inline-formula>\\n45% accuracy observed with federated schemes without protection. Moreover, our method demands a low memory overhead for handling zero-knowledge proofs as the system scales greatly to a larger number of client nodes.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10669208/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10669208/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

本文基于零知识联合学习(ZKFL)提出了一种新的全局模型聚合方法。其目的是以更短的聚合时间、更高的模型准确性和更低的系统成本确保水平或 P2P 联合机器学习系统的安全。我们在所有客户主机之间使用模型参数共享的 Chord 重叠网络。即使在受到恶意拜占庭攻击的情况下,叠加网络也能保证可信的零知识证明共享,从而保证聚合的完整性。我们在流行数据集 Fashion-MNIST 和 CIFAR10 上进行了测试,以证明新的系统保护概念。我们的基准实验验证了 ZKFL 方案在所有目标函数中宣称的优势。我们的聚合方法既可用于保护基于等级的聚合方案,也可用于保护基于相似性的聚合方案。对于一个拥有 200 多个客户端的大型系统,我们的系统只需 3 秒钟就能利用 Fashion-MNIST 数据集生成 ALIE 攻击下的高精度全局机器模型。我们的模型准确率高达 85%,而无保护的联合方案准确率仅为 3%。此外,我们的方法只需较低的内存开销来处理零知识证明,因为系统可以极大地扩展到更多的客户端节点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Trusted Model Aggregation With Zero-Knowledge Proofs in Federated Learning
This paper proposes a new global model aggregation method based on using zero-knowledge federated learning (ZKFL). The purpose is to secure horizontal or P2P federated machine learning systems with shorter aggregation times, higher model accuracy, and lower system costs. We use a model parameter-sharing Chord overlay network among all client hosts. The overlay guarantees a trusted sharing of zero-knowledge proofs for aggregation integrity, even under malicious Byzantine attacks. We tested over popular datasets, Fashion-MNIST and CIFAR10, to prove the new system protection concept. Our benchmark experiments validate the claimed advantages of the ZKFL scheme in all objective functions. Our aggregation method can be applied to secure both rank-based and similarity-based aggregation schemes. For a large system with over 200 clients, our system takes only 3 seconds to yield high-precision global machine models under the ALIE attacks with the Fashion-MNIST dataset. We have achieved up to 85% model accuracy, compared to only 3% $\sim$ 45% accuracy observed with federated schemes without protection. Moreover, our method demands a low memory overhead for handling zero-knowledge proofs as the system scales greatly to a larger number of client nodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Parallel and Distributed Systems
IEEE Transactions on Parallel and Distributed Systems 工程技术-工程:电子与电气
CiteScore
11.00
自引率
9.40%
发文量
281
审稿时长
5.6 months
期刊介绍: IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to: a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing. b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems. c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation. d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.
期刊最新文献
DyLaClass: Dynamic Labeling Based Classification for Optimal Sparse Matrix Format Selection in Accelerating SpMV Design and Performance Evaluation of Linearly Extensible Cube-Triangle Network for Multicore Systems PeakFS: An Ultra-High Performance Parallel File System via Computing-Network-Storage Co-Optimization for HPC Applications Mitosis: A Scalable Sharding System Featuring Multiple Dynamic Relay Chains Breaking the Memory Wall for Heterogeneous Federated Learning via Model Splitting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1