Lan Zhang;Anran Li;Hongyi Peng;Feng Han;Fan Huang;Xiang-Yang Li
{"title":"为横向和纵向联合学习选择保护隐私的数据","authors":"Lan Zhang;Anran Li;Hongyi Peng;Feng Han;Fan Huang;Xiang-Yang Li","doi":"10.1109/TPDS.2024.3439709","DOIUrl":null,"url":null,"abstract":"Federated learning (FL) enables distributed participants to collaboratively train a machine learning model without accessing to their local data. In FL systems, the selection of training samples has a significant impact on model performances, e.g., selecting participants whose datasets have low-quality samples, features would result in low accuracy, unstable models. In this work, we aim to solve the problem that selects a collection of high-quality training samples for a given FL task under a monetary budget. We propose a holistic design to efficiently select high-quality samples while preserve the privacy of participants’ local data, the server’s label set. We propose an efficient hierarchical sample selection mechanism to select relevant clients, their samples before training for horizontal federated learning (HFL). It uses the determinantal point process (DPP) to select both the statistical homogenous, content diverse clients, samples. Besides, we propose a private set intersection (PSI) based scheme to filter relevant features for the target VFL task. Finally, during training, an erroneous-aware importance based selection is proposed to dynamically select important clients, samples to accelerate model convergence. We verify the merits of our proposed solution with extensive experiments on a real AIoT system with 50 clients. The experimental results validate that our solution achieves accurate, efficient selection of high-quality data, consequently an FL model with a faster convergence speed, higher accuracy.","PeriodicalId":13257,"journal":{"name":"IEEE Transactions on Parallel and Distributed Systems","volume":"35 11","pages":"2054-2068"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy-Preserving Data Selection for Horizontal and Vertical Federated Learning\",\"authors\":\"Lan Zhang;Anran Li;Hongyi Peng;Feng Han;Fan Huang;Xiang-Yang Li\",\"doi\":\"10.1109/TPDS.2024.3439709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated learning (FL) enables distributed participants to collaboratively train a machine learning model without accessing to their local data. In FL systems, the selection of training samples has a significant impact on model performances, e.g., selecting participants whose datasets have low-quality samples, features would result in low accuracy, unstable models. In this work, we aim to solve the problem that selects a collection of high-quality training samples for a given FL task under a monetary budget. We propose a holistic design to efficiently select high-quality samples while preserve the privacy of participants’ local data, the server’s label set. We propose an efficient hierarchical sample selection mechanism to select relevant clients, their samples before training for horizontal federated learning (HFL). It uses the determinantal point process (DPP) to select both the statistical homogenous, content diverse clients, samples. Besides, we propose a private set intersection (PSI) based scheme to filter relevant features for the target VFL task. Finally, during training, an erroneous-aware importance based selection is proposed to dynamically select important clients, samples to accelerate model convergence. We verify the merits of our proposed solution with extensive experiments on a real AIoT system with 50 clients. The experimental results validate that our solution achieves accurate, efficient selection of high-quality data, consequently an FL model with a faster convergence speed, higher accuracy.\",\"PeriodicalId\":13257,\"journal\":{\"name\":\"IEEE Transactions on Parallel and Distributed Systems\",\"volume\":\"35 11\",\"pages\":\"2054-2068\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Parallel and Distributed Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10639479/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Parallel and Distributed Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639479/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Privacy-Preserving Data Selection for Horizontal and Vertical Federated Learning
Federated learning (FL) enables distributed participants to collaboratively train a machine learning model without accessing to their local data. In FL systems, the selection of training samples has a significant impact on model performances, e.g., selecting participants whose datasets have low-quality samples, features would result in low accuracy, unstable models. In this work, we aim to solve the problem that selects a collection of high-quality training samples for a given FL task under a monetary budget. We propose a holistic design to efficiently select high-quality samples while preserve the privacy of participants’ local data, the server’s label set. We propose an efficient hierarchical sample selection mechanism to select relevant clients, their samples before training for horizontal federated learning (HFL). It uses the determinantal point process (DPP) to select both the statistical homogenous, content diverse clients, samples. Besides, we propose a private set intersection (PSI) based scheme to filter relevant features for the target VFL task. Finally, during training, an erroneous-aware importance based selection is proposed to dynamically select important clients, samples to accelerate model convergence. We verify the merits of our proposed solution with extensive experiments on a real AIoT system with 50 clients. The experimental results validate that our solution achieves accurate, efficient selection of high-quality data, consequently an FL model with a faster convergence speed, higher accuracy.
期刊介绍:
IEEE Transactions on Parallel and Distributed Systems (TPDS) is published monthly. It publishes a range of papers, comments on previously published papers, and survey articles that deal with the parallel and distributed systems research areas of current importance to our readers. Particular areas of interest include, but are not limited to:
a) Parallel and distributed algorithms, focusing on topics such as: models of computation; numerical, combinatorial, and data-intensive parallel algorithms, scalability of algorithms and data structures for parallel and distributed systems, communication and synchronization protocols, network algorithms, scheduling, and load balancing.
b) Applications of parallel and distributed computing, including computational and data-enabled science and engineering, big data applications, parallel crowd sourcing, large-scale social network analysis, management of big data, cloud and grid computing, scientific and biomedical applications, mobile computing, and cyber-physical systems.
c) Parallel and distributed architectures, including architectures for instruction-level and thread-level parallelism; design, analysis, implementation, fault resilience and performance measurements of multiple-processor systems; multicore processors, heterogeneous many-core systems; petascale and exascale systems designs; novel big data architectures; special purpose architectures, including graphics processors, signal processors, network processors, media accelerators, and other special purpose processors and accelerators; impact of technology on architecture; network and interconnect architectures; parallel I/O and storage systems; architecture of the memory hierarchy; power-efficient and green computing architectures; dependable architectures; and performance modeling and evaluation.
d) Parallel and distributed software, including parallel and multicore programming languages and compilers, runtime systems, operating systems, Internet computing and web services, resource management including green computing, middleware for grids, clouds, and data centers, libraries, performance modeling and evaluation, parallel programming paradigms, and programming environments and tools.