用引力波检验黑洞力学第一定律

IF 6.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Science China Physics, Mechanics & Astronomy Pub Date : 2024-08-16 DOI:10.1007/s11433-024-2442-3
Chao-Wan-Zhen Wang, Jin-Bao Zhu, Guo-Qing Huang, Fu-Wen Shu
{"title":"用引力波检验黑洞力学第一定律","authors":"Chao-Wan-Zhen Wang, Jin-Bao Zhu, Guo-Qing Huang, Fu-Wen Shu","doi":"10.1007/s11433-024-2442-3","DOIUrl":null,"url":null,"abstract":"<p>The successful observation of gravitational waves has provided humanity with an additional method to explore the universe, particularly black holes. In this study, we utilize data from LIGO and Virgo gravitational wave observations to test the first law of black hole mechanics, employing two different approaches. We consider the secondary compact object as a perturbation to the primary black hole before the merger, and the remnant black hole as a stationary black hole after the merger. In the pre-merger and post-merger analysis, our results demonstrate consistency with the first law, with an error level of approximate 25% at a 68% credibility level for GW190403_051519. In the full inspiral-merger-ringdown analysis, our results show consistency with the first law of black hole mechanics, with an error level of about 6% at a 68% credibility level and 10% at a 95% credibility level for GW191219_163120. Additionally, we observe that the higher the mass ratio of the gravitational wave source, the more consistent our results are with the first law of black hole mechanics. Overall, our study sheds light on the nature of compact binary coalescence and their implications for black hole mechanics.</p>","PeriodicalId":774,"journal":{"name":"Science China Physics, Mechanics & Astronomy","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the first law of black hole mechanics with gravitational waves\",\"authors\":\"Chao-Wan-Zhen Wang, Jin-Bao Zhu, Guo-Qing Huang, Fu-Wen Shu\",\"doi\":\"10.1007/s11433-024-2442-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The successful observation of gravitational waves has provided humanity with an additional method to explore the universe, particularly black holes. In this study, we utilize data from LIGO and Virgo gravitational wave observations to test the first law of black hole mechanics, employing two different approaches. We consider the secondary compact object as a perturbation to the primary black hole before the merger, and the remnant black hole as a stationary black hole after the merger. In the pre-merger and post-merger analysis, our results demonstrate consistency with the first law, with an error level of approximate 25% at a 68% credibility level for GW190403_051519. In the full inspiral-merger-ringdown analysis, our results show consistency with the first law of black hole mechanics, with an error level of about 6% at a 68% credibility level and 10% at a 95% credibility level for GW191219_163120. Additionally, we observe that the higher the mass ratio of the gravitational wave source, the more consistent our results are with the first law of black hole mechanics. Overall, our study sheds light on the nature of compact binary coalescence and their implications for black hole mechanics.</p>\",\"PeriodicalId\":774,\"journal\":{\"name\":\"Science China Physics, Mechanics & Astronomy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Physics, Mechanics & Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1007/s11433-024-2442-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Physics, Mechanics & Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s11433-024-2442-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

引力波的成功观测为人类探索宇宙,尤其是黑洞提供了一种新的方法。在这项研究中,我们利用来自 LIGO 和室女座引力波观测的数据,采用两种不同的方法来检验黑洞力学第一定律。我们将次级致密天体视为合并前主黑洞的扰动,而将合并后的残余黑洞视为静止黑洞。在合并前和合并后的分析中,我们的结果表明与第一定律一致,GW190403_051519的误差水平约为25%,可信度为68%。在完整的吸气-合并-衰减分析中,我们的结果显示与黑洞力学第一定律一致,GW191219_163120的误差水平在68%的可信度下约为6%,在95%的可信度下约为10%。此外,我们还观察到,引力波源的质量比越高,我们的结果与黑洞力学第一定律就越一致。总之,我们的研究揭示了紧凑双星凝聚的本质及其对黑洞力学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Testing the first law of black hole mechanics with gravitational waves

The successful observation of gravitational waves has provided humanity with an additional method to explore the universe, particularly black holes. In this study, we utilize data from LIGO and Virgo gravitational wave observations to test the first law of black hole mechanics, employing two different approaches. We consider the secondary compact object as a perturbation to the primary black hole before the merger, and the remnant black hole as a stationary black hole after the merger. In the pre-merger and post-merger analysis, our results demonstrate consistency with the first law, with an error level of approximate 25% at a 68% credibility level for GW190403_051519. In the full inspiral-merger-ringdown analysis, our results show consistency with the first law of black hole mechanics, with an error level of about 6% at a 68% credibility level and 10% at a 95% credibility level for GW191219_163120. Additionally, we observe that the higher the mass ratio of the gravitational wave source, the more consistent our results are with the first law of black hole mechanics. Overall, our study sheds light on the nature of compact binary coalescence and their implications for black hole mechanics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science China Physics, Mechanics & Astronomy
Science China Physics, Mechanics & Astronomy PHYSICS, MULTIDISCIPLINARY-
CiteScore
10.30
自引率
6.20%
发文量
4047
审稿时长
3 months
期刊介绍: Science China Physics, Mechanics & Astronomy, an academic journal cosponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China, and published by Science China Press, is committed to publishing high-quality, original results in both basic and applied research. Science China Physics, Mechanics & Astronomy, is published in both print and electronic forms. It is indexed by Science Citation Index. Categories of articles: Reviews summarize representative results and achievements in a particular topic or an area, comment on the current state of research, and advise on the research directions. The author’s own opinion and related discussion is requested. Research papers report on important original results in all areas of physics, mechanics and astronomy. Brief reports present short reports in a timely manner of the latest important results.
期刊最新文献
Al1−xScxSbyN1−y: An opportunity for ferroelectric semiconductor field effect transistor Synthesis and optical properties of high-quality ultrathin homogeneous GaAs1−xSbx nanowires Three-dimensional magnetization reconstruction from electron optical phase images with physical constraints Annealing-induced long-range charge density wave order in magnetic kagome FeGe: Fluctuations and disordered structure Establishing HI mass vs. stellar mass and halo mass scaling relations using an abundance matching method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1