{"title":"基于转录组的羊绒山羊毛色关键基因筛选与验证","authors":"Remila Apar, Xiaofang Ye, Xuefeng Lv","doi":"10.1007/s13258-024-01562-2","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background</h3><p>Colored wool from cashmere goats is increasingly popular among consumers, but the transcriptomic differences between coat colors are poorly understood.</p><h3 data-test=\"abstract-sub-heading\">Objectives</h3><p>This study aimed to screen for coat color regulation-associated genes in cashmere goats to ascertain their underlying molecular mechanisms.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>Transcriptomic sequencing of skin tissues from black (BC), brown (YC), and white cashmere (WC) goats was performed. Immunohistochemistry and western blotting were used to validate SLC24A4 and DCT expression, two essential genes identified for coat color determination.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We identified 6,518 differentially expressed genes (DEGs) in the BC vs. WC group (3,919 upregulated, 2,599 downregulated). Next, 5,593 DEGs were identified in the YC vs. WC group (3,629 upregulated, 1,964 downregulated). Finally, 4,538 DEGs were expressed in both groups, with 1,980 and 1,055 DEGs exclusively expressed in either group. Functions and pathways associated with hair color were enriched, including melanosomes, melanocyte migration, melanin biosynthesis processes and functions, and melanogenesis pathways. <i>TYRP1</i>, <i>SLC24A4</i>, <i>PMEL</i>, <i>OCA2</i>, and <i>DCT</i> were significantly upregulated in BC goat skin, while <i>ASIP</i> was significantly upregulated in YC skin. Additionally, <i>KIT</i>, <i>POMC</i>, <i>SLC24A5</i>, <i>Wnt3a</i>, and <i>EDN3</i> were DEGs for different coat colors. Immunohistochemistry revealed SLC24A4 and DCT expression in dermal papillae, inner and outer root sheaths, and the hair follicle matrix. Western blotting showed that SLC24A4 protein levels were highest in BC goat skin. DCT protein levels were also highest in BC goat skin, albeit not significantly.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>These results further our understanding of coat color regulation in cashmere goats, establishing a foundation for their molecular breeding.</p>","PeriodicalId":12675,"journal":{"name":"Genes & genomics","volume":"54 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transcriptome-based screening and validation of key genes for wool color in cashmere goats\",\"authors\":\"Remila Apar, Xiaofang Ye, Xuefeng Lv\",\"doi\":\"10.1007/s13258-024-01562-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Background</h3><p>Colored wool from cashmere goats is increasingly popular among consumers, but the transcriptomic differences between coat colors are poorly understood.</p><h3 data-test=\\\"abstract-sub-heading\\\">Objectives</h3><p>This study aimed to screen for coat color regulation-associated genes in cashmere goats to ascertain their underlying molecular mechanisms.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>Transcriptomic sequencing of skin tissues from black (BC), brown (YC), and white cashmere (WC) goats was performed. Immunohistochemistry and western blotting were used to validate SLC24A4 and DCT expression, two essential genes identified for coat color determination.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>We identified 6,518 differentially expressed genes (DEGs) in the BC vs. WC group (3,919 upregulated, 2,599 downregulated). Next, 5,593 DEGs were identified in the YC vs. WC group (3,629 upregulated, 1,964 downregulated). Finally, 4,538 DEGs were expressed in both groups, with 1,980 and 1,055 DEGs exclusively expressed in either group. Functions and pathways associated with hair color were enriched, including melanosomes, melanocyte migration, melanin biosynthesis processes and functions, and melanogenesis pathways. <i>TYRP1</i>, <i>SLC24A4</i>, <i>PMEL</i>, <i>OCA2</i>, and <i>DCT</i> were significantly upregulated in BC goat skin, while <i>ASIP</i> was significantly upregulated in YC skin. Additionally, <i>KIT</i>, <i>POMC</i>, <i>SLC24A5</i>, <i>Wnt3a</i>, and <i>EDN3</i> were DEGs for different coat colors. Immunohistochemistry revealed SLC24A4 and DCT expression in dermal papillae, inner and outer root sheaths, and the hair follicle matrix. Western blotting showed that SLC24A4 protein levels were highest in BC goat skin. DCT protein levels were also highest in BC goat skin, albeit not significantly.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusion</h3><p>These results further our understanding of coat color regulation in cashmere goats, establishing a foundation for their molecular breeding.</p>\",\"PeriodicalId\":12675,\"journal\":{\"name\":\"Genes & genomics\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s13258-024-01562-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13258-024-01562-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Transcriptome-based screening and validation of key genes for wool color in cashmere goats
Background
Colored wool from cashmere goats is increasingly popular among consumers, but the transcriptomic differences between coat colors are poorly understood.
Objectives
This study aimed to screen for coat color regulation-associated genes in cashmere goats to ascertain their underlying molecular mechanisms.
Methods
Transcriptomic sequencing of skin tissues from black (BC), brown (YC), and white cashmere (WC) goats was performed. Immunohistochemistry and western blotting were used to validate SLC24A4 and DCT expression, two essential genes identified for coat color determination.
Results
We identified 6,518 differentially expressed genes (DEGs) in the BC vs. WC group (3,919 upregulated, 2,599 downregulated). Next, 5,593 DEGs were identified in the YC vs. WC group (3,629 upregulated, 1,964 downregulated). Finally, 4,538 DEGs were expressed in both groups, with 1,980 and 1,055 DEGs exclusively expressed in either group. Functions and pathways associated with hair color were enriched, including melanosomes, melanocyte migration, melanin biosynthesis processes and functions, and melanogenesis pathways. TYRP1, SLC24A4, PMEL, OCA2, and DCT were significantly upregulated in BC goat skin, while ASIP was significantly upregulated in YC skin. Additionally, KIT, POMC, SLC24A5, Wnt3a, and EDN3 were DEGs for different coat colors. Immunohistochemistry revealed SLC24A4 and DCT expression in dermal papillae, inner and outer root sheaths, and the hair follicle matrix. Western blotting showed that SLC24A4 protein levels were highest in BC goat skin. DCT protein levels were also highest in BC goat skin, albeit not significantly.
Conclusion
These results further our understanding of coat color regulation in cashmere goats, establishing a foundation for their molecular breeding.
期刊介绍:
Genes & Genomics is an official journal of the Korean Genetics Society (http://kgenetics.or.kr/). Although it is an official publication of the Genetics Society of Korea, membership of the Society is not required for contributors. It is a peer-reviewed international journal publishing print (ISSN 1976-9571) and online version (E-ISSN 2092-9293). It covers all disciplines of genetics and genomics from prokaryotes to eukaryotes from fundamental heredity to molecular aspects. The articles can be reviews, research articles, and short communications.