超越 I-MMSE 关系:高斯信道中的互信息导数

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-08-21 DOI:10.1109/TIT.2024.3447224
Minh-Toan Nguyen
{"title":"超越 I-MMSE 关系:高斯信道中的互信息导数","authors":"Minh-Toan Nguyen","doi":"10.1109/TIT.2024.3447224","DOIUrl":null,"url":null,"abstract":"The I-MMSE formula connects two important quantities in information theory and estimation theory: the mutual information and the minimum mean-squared error (MMSE). It states that in a scalar Gaussian channel, the derivative of the mutual information with respect to the signal-to-noise ratio (SNR) is one-half of the MMSE. Although any derivative at a fixed order can be computed in principle, a general formula for all the derivatives is still unknown. In this paper, we derive this general formula for vector Gaussian channels. The obtained result is remarkably similar to the classic cumulant-moment relation in statistical theory.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"7525-7531"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Derivatives of Mutual Information in Gaussian Channels\",\"authors\":\"Minh-Toan Nguyen\",\"doi\":\"10.1109/TIT.2024.3447224\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The I-MMSE formula connects two important quantities in information theory and estimation theory: the mutual information and the minimum mean-squared error (MMSE). It states that in a scalar Gaussian channel, the derivative of the mutual information with respect to the signal-to-noise ratio (SNR) is one-half of the MMSE. Although any derivative at a fixed order can be computed in principle, a general formula for all the derivatives is still unknown. In this paper, we derive this general formula for vector Gaussian channels. The obtained result is remarkably similar to the classic cumulant-moment relation in statistical theory.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 11\",\"pages\":\"7525-7531\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10643209/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10643209/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

I-MMSE 公式连接了信息论和估计理论中的两个重要量:互信息和最小均方误差(MMSE)。该公式指出,在标量高斯信道中,互信息相对于信噪比(SNR)的导数是 MMSE 的二分之一。虽然原则上可以计算固定阶次的任何导数,但所有导数的一般公式仍然未知。在本文中,我们推导出了矢量高斯信道的一般公式。所得到的结果与统计理论中经典的积矩关系极为相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Derivatives of Mutual Information in Gaussian Channels
The I-MMSE formula connects two important quantities in information theory and estimation theory: the mutual information and the minimum mean-squared error (MMSE). It states that in a scalar Gaussian channel, the derivative of the mutual information with respect to the signal-to-noise ratio (SNR) is one-half of the MMSE. Although any derivative at a fixed order can be computed in principle, a general formula for all the derivatives is still unknown. In this paper, we derive this general formula for vector Gaussian channels. The obtained result is remarkably similar to the classic cumulant-moment relation in statistical theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Large and Small Deviations for Statistical Sequence Matching Derivatives of Entropy and the MMSE Conjecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1