Leighton P. Barnes;Alex Dytso;Jingbo Liu;H. Vincent Poor
{"title":"L 1 估算:论线性估计器的最优性","authors":"Leighton P. Barnes;Alex Dytso;Jingbo Liu;H. Vincent Poor","doi":"10.1109/TIT.2024.3440929","DOIUrl":null,"url":null,"abstract":"Consider the problem of estimating a random variable X from noisy observations \n<inline-formula> <tex-math>$Y = X+ Z$ </tex-math></inline-formula>\n, where Z is standard normal, under the \n<inline-formula> <tex-math>$L^{1}$ </tex-math></inline-formula>\n fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution \n<inline-formula> <tex-math>$P_{X|Y=y}$ </tex-math></inline-formula>\n is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other \n<inline-formula> <tex-math>$L^{p}$ </tex-math></inline-formula>\n losses and observe the following phenomenon: for \n<inline-formula> <tex-math>$p \\in [{1,2}]$ </tex-math></inline-formula>\n, Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for \n<inline-formula> <tex-math>$p \\in (2,\\infty)$ </tex-math></inline-formula>\n, infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 11","pages":"8026-8039"},"PeriodicalIF":2.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"L1 Estimation: On the Optimality of Linear Estimators\",\"authors\":\"Leighton P. Barnes;Alex Dytso;Jingbo Liu;H. Vincent Poor\",\"doi\":\"10.1109/TIT.2024.3440929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the problem of estimating a random variable X from noisy observations \\n<inline-formula> <tex-math>$Y = X+ Z$ </tex-math></inline-formula>\\n, where Z is standard normal, under the \\n<inline-formula> <tex-math>$L^{1}$ </tex-math></inline-formula>\\n fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution \\n<inline-formula> <tex-math>$P_{X|Y=y}$ </tex-math></inline-formula>\\n is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other \\n<inline-formula> <tex-math>$L^{p}$ </tex-math></inline-formula>\\n losses and observe the following phenomenon: for \\n<inline-formula> <tex-math>$p \\\\in [{1,2}]$ </tex-math></inline-formula>\\n, Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for \\n<inline-formula> <tex-math>$p \\\\in (2,\\\\infty)$ </tex-math></inline-formula>\\n, infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 11\",\"pages\":\"8026-8039\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10639469/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639469/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
考虑在 $L^{1}$ 保真度准则下,从有噪声的观测值 $Y = X+ Z$ 中估计随机变量 X 的问题,其中 Z 为标准正态分布。众所周知,这种情况下的最优贝叶斯估计器是条件中值。本研究表明,唯一能诱导条件中值线性的 X 先验分布是高斯分布。同时,还提出了其他一些结果。特别是,它证明了如果条件分布 $P_{X|Y=y}$ 对所有 y 都是对称的,那么 X 必须遵循高斯分布。此外,我们还考虑了其他 $L^{p}$ 损失,并观察到以下现象:对于 $p \in [{1,2}]$ 来说,高斯分布是唯一能诱导线性最优贝叶斯估计器的先验分布;而对于 $p \in (2,\infty)$ 来说,X 上有无限多的先验分布能诱导线性。最后,本文还提供了一些扩展,以涵盖导致某些指数族条件分布的噪声模型。
L1 Estimation: On the Optimality of Linear Estimators
Consider the problem of estimating a random variable X from noisy observations
$Y = X+ Z$
, where Z is standard normal, under the
$L^{1}$
fidelity criterion. It is well known that the optimal Bayesian estimator in this setting is the conditional median. This work shows that the only prior distribution on X that induces linearity in the conditional median is Gaussian. Along the way, several other results are presented. In particular, it is demonstrated that if the conditional distribution
$P_{X|Y=y}$
is symmetric for all y, then X must follow a Gaussian distribution. Additionally, we consider other
$L^{p}$
losses and observe the following phenomenon: for
$p \in [{1,2}]$
, Gaussian is the only prior distribution that induces a linear optimal Bayesian estimator, and for
$p \in (2,\infty)$
, infinitely many prior distributions on X can induce linearity. Finally, extensions are provided to encompass noise models leading to conditional distributions from certain exponential families.
期刊介绍:
The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.