严重失衡二进制数据的最小最优率

IF 2.2 3区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Information Theory Pub Date : 2024-09-12 DOI:10.1109/TIT.2024.3459814
Yang Song;Hui Zou
{"title":"严重失衡二进制数据的最小最优率","authors":"Yang Song;Hui Zou","doi":"10.1109/TIT.2024.3459814","DOIUrl":null,"url":null,"abstract":"In a wide range of binary prediction and estimation tasks, the data set exhibits a high degree of imbalance between the sample sizes of the two classes, which greatly hinders the performance of standard machine learning methods. In spite of a vast collection of methods aiming to achieve better performance on heavily imbalanced data, the theoretical limit of estimation with imbalanced data remains unknown. This paper provides some insights into the imbalanced classification problem by establishing the minimax risk of log-odds function estimation. Our minimax bounds reveal a notion of effective sample size. We further construct a sampling technique and prove that a minimax-rate optimal method for balanced data combined with the sampling technique achieves minimax-rate optimal performance on imbalanced data.","PeriodicalId":13494,"journal":{"name":"IEEE Transactions on Information Theory","volume":"70 12","pages":"9001-9011"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimax Optimal Rates With Heavily Imbalanced Binary Data\",\"authors\":\"Yang Song;Hui Zou\",\"doi\":\"10.1109/TIT.2024.3459814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a wide range of binary prediction and estimation tasks, the data set exhibits a high degree of imbalance between the sample sizes of the two classes, which greatly hinders the performance of standard machine learning methods. In spite of a vast collection of methods aiming to achieve better performance on heavily imbalanced data, the theoretical limit of estimation with imbalanced data remains unknown. This paper provides some insights into the imbalanced classification problem by establishing the minimax risk of log-odds function estimation. Our minimax bounds reveal a notion of effective sample size. We further construct a sampling technique and prove that a minimax-rate optimal method for balanced data combined with the sampling technique achieves minimax-rate optimal performance on imbalanced data.\",\"PeriodicalId\":13494,\"journal\":{\"name\":\"IEEE Transactions on Information Theory\",\"volume\":\"70 12\",\"pages\":\"9001-9011\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Information Theory\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10679682/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Information Theory","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679682/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

在各种二元预测和估算任务中,数据集在两类样本量之间表现出高度不平衡,这极大地阻碍了标准机器学习方法的性能。尽管有大量方法旨在提高严重不平衡数据的性能,但不平衡数据估算的理论极限仍然未知。本文通过建立对数-胜数函数估计的最小风险,为不平衡分类问题提供了一些见解。我们的最小边界揭示了有效样本大小的概念。我们进一步构建了一种抽样技术,并证明了平衡数据的最小率最优方法与抽样技术相结合,可以在不平衡数据上实现最小率最优性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimax Optimal Rates With Heavily Imbalanced Binary Data
In a wide range of binary prediction and estimation tasks, the data set exhibits a high degree of imbalance between the sample sizes of the two classes, which greatly hinders the performance of standard machine learning methods. In spite of a vast collection of methods aiming to achieve better performance on heavily imbalanced data, the theoretical limit of estimation with imbalanced data remains unknown. This paper provides some insights into the imbalanced classification problem by establishing the minimax risk of log-odds function estimation. Our minimax bounds reveal a notion of effective sample size. We further construct a sampling technique and prove that a minimax-rate optimal method for balanced data combined with the sampling technique achieves minimax-rate optimal performance on imbalanced data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Information Theory
IEEE Transactions on Information Theory 工程技术-工程:电子与电气
CiteScore
5.70
自引率
20.00%
发文量
514
审稿时长
12 months
期刊介绍: The IEEE Transactions on Information Theory is a journal that publishes theoretical and experimental papers concerned with the transmission, processing, and utilization of information. The boundaries of acceptable subject matter are intentionally not sharply delimited. Rather, it is hoped that as the focus of research activity changes, a flexible policy will permit this Transactions to follow suit. Current appropriate topics are best reflected by recent Tables of Contents; they are summarized in the titles of editorial areas that appear on the inside front cover.
期刊最新文献
Table of Contents IEEE Transactions on Information Theory Publication Information IEEE Transactions on Information Theory Information for Authors Interference Networks With Random User Activity and Heterogeneous Delay Constraints Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1