临界状态下准静力变形粒状土的缩放定律

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-09-09 DOI:10.1007/s10035-024-01459-7
Jianbo Fei, Hao Tang, Chaoshuai Yang, Xiangsheng Chen
{"title":"临界状态下准静力变形粒状土的缩放定律","authors":"Jianbo Fei,&nbsp;Hao Tang,&nbsp;Chaoshuai Yang,&nbsp;Xiangsheng Chen","doi":"10.1007/s10035-024-01459-7","DOIUrl":null,"url":null,"abstract":"<div><p>To enhance our understanding of soil behavior at critical states, considering that natural soil is composed of granular matter, a quasi-static inertia number taking soil compaction into account is proposed. In analyzing classical triaxial test data of soil, the scaling law of quasi-statically deforming grains at the critical state is explored; a simple linear relationship is found between the coefficient of friction and the proposed number. This scaling law describes quantitatively the influence of initial compaction, shear rate, confining pressure, and particle size on the frictional strength of granular soils when they reach the critical state. The number proposed is employed to describe the scaling of volumetric behavior of granular soils undergoing quasi-static deformation. The difference between the particle volume fraction at the critical state and that at the initial compacted state is also found to be linearly correlated with the quasi-static inertia number, for soil at the critical state.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scaling laws for quasi-statically deforming granular soil at critical state\",\"authors\":\"Jianbo Fei,&nbsp;Hao Tang,&nbsp;Chaoshuai Yang,&nbsp;Xiangsheng Chen\",\"doi\":\"10.1007/s10035-024-01459-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>To enhance our understanding of soil behavior at critical states, considering that natural soil is composed of granular matter, a quasi-static inertia number taking soil compaction into account is proposed. In analyzing classical triaxial test data of soil, the scaling law of quasi-statically deforming grains at the critical state is explored; a simple linear relationship is found between the coefficient of friction and the proposed number. This scaling law describes quantitatively the influence of initial compaction, shear rate, confining pressure, and particle size on the frictional strength of granular soils when they reach the critical state. The number proposed is employed to describe the scaling of volumetric behavior of granular soils undergoing quasi-static deformation. The difference between the particle volume fraction at the critical state and that at the initial compacted state is also found to be linearly correlated with the quasi-static inertia number, for soil at the critical state.</p><h3>Graphic abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01459-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01459-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了加深我们对临界状态下土壤行为的理解,考虑到天然土壤是由颗粒物质组成的,我们提出了一个考虑到土壤压实的准静态惯性数。在分析土壤的经典三轴试验数据时,探讨了临界状态下准静态变形颗粒的缩放规律;发现摩擦系数与所提出的惯性数之间存在简单的线性关系。该缩放定律定量描述了颗粒土达到临界状态时,初始压实度、剪切速率、约束压力和颗粒大小对摩擦强度的影响。所提出的数字用于描述发生准静态变形的粒状土的体积行为比例。研究还发现,对于处于临界状态的土壤,临界状态下的颗粒体积分数与初始压实状态下的颗粒体积分数之差与准静态惯性数呈线性相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scaling laws for quasi-statically deforming granular soil at critical state

To enhance our understanding of soil behavior at critical states, considering that natural soil is composed of granular matter, a quasi-static inertia number taking soil compaction into account is proposed. In analyzing classical triaxial test data of soil, the scaling law of quasi-statically deforming grains at the critical state is explored; a simple linear relationship is found between the coefficient of friction and the proposed number. This scaling law describes quantitatively the influence of initial compaction, shear rate, confining pressure, and particle size on the frictional strength of granular soils when they reach the critical state. The number proposed is employed to describe the scaling of volumetric behavior of granular soils undergoing quasi-static deformation. The difference between the particle volume fraction at the critical state and that at the initial compacted state is also found to be linearly correlated with the quasi-static inertia number, for soil at the critical state.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Research on the development of a monitoring experimental platform for top coal migration trajectory in longwall top coal caving and optimization of coal drawing process Liquefaction mechanisms of sand deposits with silt interlayer The study of motion characteristics of detectors based on magnetic localization technology in a soft granule system Development and performance assessment of a novel mechatronic assisted air pluviation system for reconstitution of cohesionless soils Experimental exploration of geometric cohesion and solid fraction in columns of highly non-convex Platonic polypods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1