通过 3D 打印生成颗粒介质:从形态学角度进行比较评估

IF 2.4 3区 工程技术 Granular Matter Pub Date : 2024-09-03 DOI:10.1007/s10035-024-01461-z
KV Anusree, Rizwan Khan, Gali Madhavi Latha
{"title":"通过 3D 打印生成颗粒介质:从形态学角度进行比较评估","authors":"KV Anusree,&nbsp;Rizwan Khan,&nbsp;Gali Madhavi Latha","doi":"10.1007/s10035-024-01461-z","DOIUrl":null,"url":null,"abstract":"<div><p>The generation of artificial granular media to investigate micro-to-macro correlations in sands is one of the innovations inspired by the recent advancements in 3D printing technology. While several 3D printing techniques exist to print granular particles, the basis for the selection of a specific technique and the relative accuracy in mimicking the morphological features are yet to be investigated. This paper investigates the accuracy of the reproduction of granular morphology by three widely used 3D printing techniques. Polyjet, Digital Light Processing (DLP), and Stereolithography (SLA) printing techniques are used to generate the analogues of reference sand particles of size range 1.76–6.39 mm. Subsequently, the 3D morphological indices of the printed grains are computed using X-ray micro-computed tomography (µCT) imaging followed by spherical harmonic (SH) particle reconstruction and computational analysis. These indices are compared with those of the reference particles, and the errors in the computed morphological parameters are obtained for the three different 3D printing techniques. The errors are found to be the lowest for polyjet-printed particles and the highest for SLA-printed particles. The accuracy of the reproduction of morphology is found to increase with an increase in the particle size.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"26 4","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of granular media through 3D printing: a comparative evaluation from the morphological perspectives\",\"authors\":\"KV Anusree,&nbsp;Rizwan Khan,&nbsp;Gali Madhavi Latha\",\"doi\":\"10.1007/s10035-024-01461-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The generation of artificial granular media to investigate micro-to-macro correlations in sands is one of the innovations inspired by the recent advancements in 3D printing technology. While several 3D printing techniques exist to print granular particles, the basis for the selection of a specific technique and the relative accuracy in mimicking the morphological features are yet to be investigated. This paper investigates the accuracy of the reproduction of granular morphology by three widely used 3D printing techniques. Polyjet, Digital Light Processing (DLP), and Stereolithography (SLA) printing techniques are used to generate the analogues of reference sand particles of size range 1.76–6.39 mm. Subsequently, the 3D morphological indices of the printed grains are computed using X-ray micro-computed tomography (µCT) imaging followed by spherical harmonic (SH) particle reconstruction and computational analysis. These indices are compared with those of the reference particles, and the errors in the computed morphological parameters are obtained for the three different 3D printing techniques. The errors are found to be the lowest for polyjet-printed particles and the highest for SLA-printed particles. The accuracy of the reproduction of morphology is found to increase with an increase in the particle size.</p></div>\",\"PeriodicalId\":49323,\"journal\":{\"name\":\"Granular Matter\",\"volume\":\"26 4\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Granular Matter\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10035-024-01461-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01461-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成人工颗粒介质以研究砂中的微观-宏观相关性,是近期三维打印技术进步所激发的创新之一。虽然有多种三维打印技术可以打印颗粒,但选择特定技术的依据以及模仿形态特征的相对准确性仍有待研究。本文研究了三种广泛使用的三维打印技术再现颗粒形态的准确性。采用 Polyjet、数字光处理(DLP)和立体光刻(SLA)打印技术生成尺寸范围为 1.76-6.39 毫米的参考沙粒模拟物。随后,利用 X 射线显微计算机断层扫描(µCT)成像技术计算打印颗粒的三维形态指数,然后进行球谐波(SH)颗粒重建和计算分析。将这些指数与参考颗粒的指数进行比较,得出三种不同三维打印技术的形态参数计算误差。结果发现,聚合喷射打印颗粒的误差最小,而 SLA 打印颗粒的误差最大。随着颗粒尺寸的增大,形态再现的准确性也随之提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of granular media through 3D printing: a comparative evaluation from the morphological perspectives

The generation of artificial granular media to investigate micro-to-macro correlations in sands is one of the innovations inspired by the recent advancements in 3D printing technology. While several 3D printing techniques exist to print granular particles, the basis for the selection of a specific technique and the relative accuracy in mimicking the morphological features are yet to be investigated. This paper investigates the accuracy of the reproduction of granular morphology by three widely used 3D printing techniques. Polyjet, Digital Light Processing (DLP), and Stereolithography (SLA) printing techniques are used to generate the analogues of reference sand particles of size range 1.76–6.39 mm. Subsequently, the 3D morphological indices of the printed grains are computed using X-ray micro-computed tomography (µCT) imaging followed by spherical harmonic (SH) particle reconstruction and computational analysis. These indices are compared with those of the reference particles, and the errors in the computed morphological parameters are obtained for the three different 3D printing techniques. The errors are found to be the lowest for polyjet-printed particles and the highest for SLA-printed particles. The accuracy of the reproduction of morphology is found to increase with an increase in the particle size.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Granular Matter
Granular Matter MATERIALS SCIENCE, MULTIDISCIPLINARY-MECHANICS
CiteScore
4.30
自引率
8.30%
发文量
95
期刊介绍: Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science. These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations. >> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa. The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.
期刊最新文献
Research on the development of a monitoring experimental platform for top coal migration trajectory in longwall top coal caving and optimization of coal drawing process Liquefaction mechanisms of sand deposits with silt interlayer The study of motion characteristics of detectors based on magnetic localization technology in a soft granule system Development and performance assessment of a novel mechatronic assisted air pluviation system for reconstitution of cohesionless soils Experimental exploration of geometric cohesion and solid fraction in columns of highly non-convex Platonic polypods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1