机器学习中的拓扑方法:从业人员教程

Baris Coskunuzer, Cüneyt Gürcan Akçora
{"title":"机器学习中的拓扑方法:从业人员教程","authors":"Baris Coskunuzer, Cüneyt Gürcan Akçora","doi":"arxiv-2409.02901","DOIUrl":null,"url":null,"abstract":"Topological Machine Learning (TML) is an emerging field that leverages\ntechniques from algebraic topology to analyze complex data structures in ways\nthat traditional machine learning methods may not capture. This tutorial\nprovides a comprehensive introduction to two key TML techniques, persistent\nhomology and the Mapper algorithm, with an emphasis on practical applications.\nPersistent homology captures multi-scale topological features such as clusters,\nloops, and voids, while the Mapper algorithm creates an interpretable graph\nsummarizing high-dimensional data. To enhance accessibility, we adopt a\ndata-centric approach, enabling readers to gain hands-on experience applying\nthese techniques to relevant tasks. We provide step-by-step explanations,\nimplementations, hands-on examples, and case studies to demonstrate how these\ntools can be applied to real-world problems. The goal is to equip researchers\nand practitioners with the knowledge and resources to incorporate TML into\ntheir work, revealing insights often hidden from conventional machine learning\nmethods. The tutorial code is available at\nhttps://github.com/cakcora/TopologyForML","PeriodicalId":501119,"journal":{"name":"arXiv - MATH - Algebraic Topology","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological Methods in Machine Learning: A Tutorial for Practitioners\",\"authors\":\"Baris Coskunuzer, Cüneyt Gürcan Akçora\",\"doi\":\"arxiv-2409.02901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Topological Machine Learning (TML) is an emerging field that leverages\\ntechniques from algebraic topology to analyze complex data structures in ways\\nthat traditional machine learning methods may not capture. This tutorial\\nprovides a comprehensive introduction to two key TML techniques, persistent\\nhomology and the Mapper algorithm, with an emphasis on practical applications.\\nPersistent homology captures multi-scale topological features such as clusters,\\nloops, and voids, while the Mapper algorithm creates an interpretable graph\\nsummarizing high-dimensional data. To enhance accessibility, we adopt a\\ndata-centric approach, enabling readers to gain hands-on experience applying\\nthese techniques to relevant tasks. We provide step-by-step explanations,\\nimplementations, hands-on examples, and case studies to demonstrate how these\\ntools can be applied to real-world problems. The goal is to equip researchers\\nand practitioners with the knowledge and resources to incorporate TML into\\ntheir work, revealing insights often hidden from conventional machine learning\\nmethods. The tutorial code is available at\\nhttps://github.com/cakcora/TopologyForML\",\"PeriodicalId\":501119,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Topology\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02901\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02901","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

拓扑机器学习(TML)是一个新兴领域,它利用代数拓扑学的技术,以传统机器学习方法无法捕捉的方式分析复杂的数据结构。本教程全面介绍了两种关键的拓扑机器学习技术--持久同源性(persistententhomology)和映射器算法(Mapper algorithm),并重点介绍了实际应用。持久同源性可以捕捉多尺度拓扑特征,如集群、环路和空洞,而映射器算法则可以创建可解释的图,汇总高维数据。为了增强可读性,我们采用了以数据为中心的方法,使读者能够获得将这些技术应用于相关任务的实践经验。我们提供了分步解释、实现方法、实践示例和案例研究,以演示如何将这些工具应用于实际问题。我们的目标是为研究人员和从业人员提供知识和资源,以便将 TML 纳入他们的工作中,揭示传统机器学习方法中经常隐藏的洞察力。教程代码可从以下网址获取:https://github.com/cakcora/TopologyForML
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological Methods in Machine Learning: A Tutorial for Practitioners
Topological Machine Learning (TML) is an emerging field that leverages techniques from algebraic topology to analyze complex data structures in ways that traditional machine learning methods may not capture. This tutorial provides a comprehensive introduction to two key TML techniques, persistent homology and the Mapper algorithm, with an emphasis on practical applications. Persistent homology captures multi-scale topological features such as clusters, loops, and voids, while the Mapper algorithm creates an interpretable graph summarizing high-dimensional data. To enhance accessibility, we adopt a data-centric approach, enabling readers to gain hands-on experience applying these techniques to relevant tasks. We provide step-by-step explanations, implementations, hands-on examples, and case studies to demonstrate how these tools can be applied to real-world problems. The goal is to equip researchers and practitioners with the knowledge and resources to incorporate TML into their work, revealing insights often hidden from conventional machine learning methods. The tutorial code is available at https://github.com/cakcora/TopologyForML
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tensor triangular geometry of modules over the mod 2 Steenrod algebra Ring operads and symmetric bimonoidal categories Inferring hyperuniformity from local structures via persistent homology Computing the homology of universal covers via effective homology and discrete vector fields Geometric representation of cohomology classes for the Lie groups Spin(7) and Spin(8)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1