Weizao Liu , Zhenghao Wang , Wen Cao , Yanjie Liang , Sohrab Rohani , Yuntao Xin , Jinmao Hua , Chunlian Ding , Xuewei Lv
{"title":"从高铬钒渣中绿色高效分离钒和铬:最新发展综述","authors":"Weizao Liu , Zhenghao Wang , Wen Cao , Yanjie Liang , Sohrab Rohani , Yuntao Xin , Jinmao Hua , Chunlian Ding , Xuewei Lv","doi":"10.1039/d4gc02192d","DOIUrl":null,"url":null,"abstract":"<div><div>Vanadium(<span>v</span>) and chromium (Cr) are important strategic resources due to their outstanding physicochemical properties. Due to their similar physical and chemical properties, V and Cr are often associated and coexist in many minerals. This review highlights the significance of V and Cr extraction and separation from high-chromium vanadium slag, emphasizing the key separation techniques. Current strategies for vanadium–chromium separation include separation during the extraction process, that is selective extraction of one of the elements from the slag and co-extraction of vanadium and chromium into solution followed by separation of vanadium and chromium from the solution. Both strategies are pivotal for optimizing the extraction process and enhancing industrial applications. This comprehensive review provides insights into the separation methods, addressing the challenges and advancements in the field. The elucidation of the importance of vanadium and chromium, coupled with a detailed analysis of high-chromium vanadium slag and current separation techniques, contributes to the utilization of vanadium–titanium-bearing magnetite resources with a high content of chromium and also evolves the knowledge in this critical area.</div></div>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green and efficient separation of vanadium and chromium from high-chromium vanadium slag: a review of recent developments\",\"authors\":\"Weizao Liu , Zhenghao Wang , Wen Cao , Yanjie Liang , Sohrab Rohani , Yuntao Xin , Jinmao Hua , Chunlian Ding , Xuewei Lv\",\"doi\":\"10.1039/d4gc02192d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Vanadium(<span>v</span>) and chromium (Cr) are important strategic resources due to their outstanding physicochemical properties. Due to their similar physical and chemical properties, V and Cr are often associated and coexist in many minerals. This review highlights the significance of V and Cr extraction and separation from high-chromium vanadium slag, emphasizing the key separation techniques. Current strategies for vanadium–chromium separation include separation during the extraction process, that is selective extraction of one of the elements from the slag and co-extraction of vanadium and chromium into solution followed by separation of vanadium and chromium from the solution. Both strategies are pivotal for optimizing the extraction process and enhancing industrial applications. This comprehensive review provides insights into the separation methods, addressing the challenges and advancements in the field. The elucidation of the importance of vanadium and chromium, coupled with a detailed analysis of high-chromium vanadium slag and current separation techniques, contributes to the utilization of vanadium–titanium-bearing magnetite resources with a high content of chromium and also evolves the knowledge in this critical area.</div></div>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.3000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S146392622400774X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S146392622400774X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Green and efficient separation of vanadium and chromium from high-chromium vanadium slag: a review of recent developments
Vanadium(v) and chromium (Cr) are important strategic resources due to their outstanding physicochemical properties. Due to their similar physical and chemical properties, V and Cr are often associated and coexist in many minerals. This review highlights the significance of V and Cr extraction and separation from high-chromium vanadium slag, emphasizing the key separation techniques. Current strategies for vanadium–chromium separation include separation during the extraction process, that is selective extraction of one of the elements from the slag and co-extraction of vanadium and chromium into solution followed by separation of vanadium and chromium from the solution. Both strategies are pivotal for optimizing the extraction process and enhancing industrial applications. This comprehensive review provides insights into the separation methods, addressing the challenges and advancements in the field. The elucidation of the importance of vanadium and chromium, coupled with a detailed analysis of high-chromium vanadium slag and current separation techniques, contributes to the utilization of vanadium–titanium-bearing magnetite resources with a high content of chromium and also evolves the knowledge in this critical area.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.