{"title":"二氧化硅气凝胶中的碳点具有不同寻常的光电特性","authors":"Andreas Tiron-Stathopoulos, Konstantinos Dimos","doi":"10.1007/s10971-024-06538-y","DOIUrl":null,"url":null,"abstract":"<div><p>The unique properties that aerogels exhibit have been the main reason for the intense research around new synthesis routes and new applications in various fields in recent years. Composite aerogels combine the properties of both the aerogel matrix and the inclusions, where the latter can be several materials in various forms. Carbon dots are suitable candidates to use as inclusion for the development of composite aerogels and that is due to their low-cost production, low toxicity, biocompatibility, and tunable fluorescence. Here we report the synthesis of a composite silica matrix aerogel with boron-doped carbon dots inclusions, and we focus on the optical response of the material. The method we use to prepare the composite aerogel is the classical sol-gel process using tetraethyl orthosilicate as silica precursor, followed by CO<sub>2</sub> supercritical drying. The resulting aerogel is crack-free, exhibiting a surface area of 518 m<sup>2</sup>/g and diverse optoelectronic properties compared to the pristine carbon dots in solution, as an excitation-dependent emission and an unusual blue-shift for excitation centered in the UVB region. The unfamiliar optoelectronic properties of the carbon dots in the aerogel are discussed and are attributed to the influence of the silica matrix. Hence, the induced carbon dots’ aggregation may lead to recombination de-excitation pathways, whereas the photoluminescence contribution by the core-related de-excitation pathway may shorten, as the penetration depth of radiation into the dots’ core may be affected by its intensity which drops drastically for high energies (for <i>λ</i><sub>exc.</sub> < 300 nm) due to strong absorption by the silica matrix.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"456 - 467"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon dots’ unusual optoelectronic properties in silica aerogels\",\"authors\":\"Andreas Tiron-Stathopoulos, Konstantinos Dimos\",\"doi\":\"10.1007/s10971-024-06538-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The unique properties that aerogels exhibit have been the main reason for the intense research around new synthesis routes and new applications in various fields in recent years. Composite aerogels combine the properties of both the aerogel matrix and the inclusions, where the latter can be several materials in various forms. Carbon dots are suitable candidates to use as inclusion for the development of composite aerogels and that is due to their low-cost production, low toxicity, biocompatibility, and tunable fluorescence. Here we report the synthesis of a composite silica matrix aerogel with boron-doped carbon dots inclusions, and we focus on the optical response of the material. The method we use to prepare the composite aerogel is the classical sol-gel process using tetraethyl orthosilicate as silica precursor, followed by CO<sub>2</sub> supercritical drying. The resulting aerogel is crack-free, exhibiting a surface area of 518 m<sup>2</sup>/g and diverse optoelectronic properties compared to the pristine carbon dots in solution, as an excitation-dependent emission and an unusual blue-shift for excitation centered in the UVB region. The unfamiliar optoelectronic properties of the carbon dots in the aerogel are discussed and are attributed to the influence of the silica matrix. Hence, the induced carbon dots’ aggregation may lead to recombination de-excitation pathways, whereas the photoluminescence contribution by the core-related de-excitation pathway may shorten, as the penetration depth of radiation into the dots’ core may be affected by its intensity which drops drastically for high energies (for <i>λ</i><sub>exc.</sub> < 300 nm) due to strong absorption by the silica matrix.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"456 - 467\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06538-y\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06538-y","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Carbon dots’ unusual optoelectronic properties in silica aerogels
The unique properties that aerogels exhibit have been the main reason for the intense research around new synthesis routes and new applications in various fields in recent years. Composite aerogels combine the properties of both the aerogel matrix and the inclusions, where the latter can be several materials in various forms. Carbon dots are suitable candidates to use as inclusion for the development of composite aerogels and that is due to their low-cost production, low toxicity, biocompatibility, and tunable fluorescence. Here we report the synthesis of a composite silica matrix aerogel with boron-doped carbon dots inclusions, and we focus on the optical response of the material. The method we use to prepare the composite aerogel is the classical sol-gel process using tetraethyl orthosilicate as silica precursor, followed by CO2 supercritical drying. The resulting aerogel is crack-free, exhibiting a surface area of 518 m2/g and diverse optoelectronic properties compared to the pristine carbon dots in solution, as an excitation-dependent emission and an unusual blue-shift for excitation centered in the UVB region. The unfamiliar optoelectronic properties of the carbon dots in the aerogel are discussed and are attributed to the influence of the silica matrix. Hence, the induced carbon dots’ aggregation may lead to recombination de-excitation pathways, whereas the photoluminescence contribution by the core-related de-excitation pathway may shorten, as the penetration depth of radiation into the dots’ core may be affected by its intensity which drops drastically for high energies (for λexc. < 300 nm) due to strong absorption by the silica matrix.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.