利用不同的锆源以及退火温度和薄膜厚度调节 ZrO2 薄膜的光催化活性、表面形貌和结构/光学参数的新方法

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-09-09 DOI:10.1007/s10971-024-06534-2
Gulsen Sahin, Abdullah Goktas, Esra Aslan
{"title":"利用不同的锆源以及退火温度和薄膜厚度调节 ZrO2 薄膜的光催化活性、表面形貌和结构/光学参数的新方法","authors":"Gulsen Sahin,&nbsp;Abdullah Goktas,&nbsp;Esra Aslan","doi":"10.1007/s10971-024-06534-2","DOIUrl":null,"url":null,"abstract":"<div><p>Water recycling is a convenient way to get around the water shortage and wastewater analysis. The water can be reused for domestic purposes by eliminating organic pollutants through a photocatalytic process. For this aim, the sol-gel dip coating process synthesized ZrO2 nanostructured thin films with tunable structural, morphological, and optical properties and photocatalytic activities. Zr sources (acetate, nitrate, and chloride), annealing temperature (T<sub>A</sub>), and thickness (d)-dependent structural, morphological, optical, and photocatalytic performances of the ZrO<sub>2</sub> films were scrutinized by x-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive x-ray spectroscopy (EDS), mapping technique, and UV–Vis spectroscopy. The XRD, SEM, EDS, and mapping analyses confirmed the formation of nanostructured ZrO<sub>2</sub> thin film. The results revealed that ZrO<sub>2</sub> film had a tetragonal phase with various crystallite sizes and different surface morphologies as the Zr sources, T<sub>A</sub>, and d varied. There were significant variations in the optical absorbance, band gap, refractive index, and absorption coefficient based on Zr sources, TA, and d. Among all ZrO<sub>2</sub> films, the film sample synthesized by the Zr-acetate source annealed at T<sub>A</sub> of 500 °C and with d of 940 nm was found to be the most effective film in terms of optical and crystalline quality as well as photocatalytic performance (94% efficiency in 150 min) for the degradation of methylene blue dye. The enhanced light utilization capability suppressed charge recombination, surface morphology, grain size, defect concentration, and optical band gap values of the nanostructured zirconia thin films are the key factors corresponding to enhanced photocatalytic performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"425 - 443"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new way to tune photocatalytic activity, surface morphology, and structural/optical parameters of ZrO2 thin films using different Zr sources along with annealing temperature and film thickness\",\"authors\":\"Gulsen Sahin,&nbsp;Abdullah Goktas,&nbsp;Esra Aslan\",\"doi\":\"10.1007/s10971-024-06534-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water recycling is a convenient way to get around the water shortage and wastewater analysis. The water can be reused for domestic purposes by eliminating organic pollutants through a photocatalytic process. For this aim, the sol-gel dip coating process synthesized ZrO2 nanostructured thin films with tunable structural, morphological, and optical properties and photocatalytic activities. Zr sources (acetate, nitrate, and chloride), annealing temperature (T<sub>A</sub>), and thickness (d)-dependent structural, morphological, optical, and photocatalytic performances of the ZrO<sub>2</sub> films were scrutinized by x-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive x-ray spectroscopy (EDS), mapping technique, and UV–Vis spectroscopy. The XRD, SEM, EDS, and mapping analyses confirmed the formation of nanostructured ZrO<sub>2</sub> thin film. The results revealed that ZrO<sub>2</sub> film had a tetragonal phase with various crystallite sizes and different surface morphologies as the Zr sources, T<sub>A</sub>, and d varied. There were significant variations in the optical absorbance, band gap, refractive index, and absorption coefficient based on Zr sources, TA, and d. Among all ZrO<sub>2</sub> films, the film sample synthesized by the Zr-acetate source annealed at T<sub>A</sub> of 500 °C and with d of 940 nm was found to be the most effective film in terms of optical and crystalline quality as well as photocatalytic performance (94% efficiency in 150 min) for the degradation of methylene blue dye. The enhanced light utilization capability suppressed charge recombination, surface morphology, grain size, defect concentration, and optical band gap values of the nanostructured zirconia thin films are the key factors corresponding to enhanced photocatalytic performance.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"425 - 443\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06534-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06534-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

水循环利用是解决水资源短缺和废水分析问题的便捷途径。通过光催化过程消除有机污染物,可将水回用于家庭用途。为此,采用溶胶-凝胶浸涂工艺合成了具有可调结构、形态、光学特性和光催化活性的 ZrO2 纳米结构薄膜。通过 X 射线衍射 (XRD)、扫描电子显微镜 (SEM)、电子色散 X 射线光谱 (EDS)、制图技术和紫外可见光谱,研究了 ZrO2 薄膜的 Zr 来源(醋酸盐、硝酸盐和氯化物)、退火温度 (TA) 和厚度 (d) 与结构、形态、光学和光催化性能的关系。X射线衍射、扫描电子显微镜、电子色散 X 射线光谱和绘图分析证实了纳米结构 ZrO2 薄膜的形成。结果表明,随着 Zr 源、TA 和 d 的变化,ZrO2 薄膜具有不同结晶尺寸和不同表面形态的四方相。在所有 ZrO2 薄膜中,由醋酸锆源合成的薄膜样品在 TA 值为 500 ℃、d 值为 940 nm 时退火,其光学质量、结晶质量和光催化性能(150 分钟内效率为 94%)对亚甲基蓝染料的降解效果最好。纳米结构氧化锆薄膜的光利用能力增强、电荷重组抑制、表面形貌、晶粒尺寸、缺陷浓度和光带隙值是光催化性能增强的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new way to tune photocatalytic activity, surface morphology, and structural/optical parameters of ZrO2 thin films using different Zr sources along with annealing temperature and film thickness

Water recycling is a convenient way to get around the water shortage and wastewater analysis. The water can be reused for domestic purposes by eliminating organic pollutants through a photocatalytic process. For this aim, the sol-gel dip coating process synthesized ZrO2 nanostructured thin films with tunable structural, morphological, and optical properties and photocatalytic activities. Zr sources (acetate, nitrate, and chloride), annealing temperature (TA), and thickness (d)-dependent structural, morphological, optical, and photocatalytic performances of the ZrO2 films were scrutinized by x-ray diffraction (XRD), scanning electron microscopy (SEM), electron dispersive x-ray spectroscopy (EDS), mapping technique, and UV–Vis spectroscopy. The XRD, SEM, EDS, and mapping analyses confirmed the formation of nanostructured ZrO2 thin film. The results revealed that ZrO2 film had a tetragonal phase with various crystallite sizes and different surface morphologies as the Zr sources, TA, and d varied. There were significant variations in the optical absorbance, band gap, refractive index, and absorption coefficient based on Zr sources, TA, and d. Among all ZrO2 films, the film sample synthesized by the Zr-acetate source annealed at TA of 500 °C and with d of 940 nm was found to be the most effective film in terms of optical and crystalline quality as well as photocatalytic performance (94% efficiency in 150 min) for the degradation of methylene blue dye. The enhanced light utilization capability suppressed charge recombination, surface morphology, grain size, defect concentration, and optical band gap values of the nanostructured zirconia thin films are the key factors corresponding to enhanced photocatalytic performance.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1