M. Sarmast Sh, A. B. Dayang Radiah, D. A. Hoey, N. Abdullah, H. S. Zainuddin, S. Kamarudin
{"title":"不同烧结温度下获得的二氧化硅生物玻璃的结构、力学和生物学变化","authors":"M. Sarmast Sh, A. B. Dayang Radiah, D. A. Hoey, N. Abdullah, H. S. Zainuddin, S. Kamarudin","doi":"10.1007/s10971-024-06480-z","DOIUrl":null,"url":null,"abstract":"<div><p>The challenges of forming a crystalline phase within 45S5 Bioglass<sup>®</sup> (45% SiO<sub>2</sub>-24.5% CaO-24.5% Na<sub>2</sub>O-6% P<sub>2</sub>O<sub>5</sub> mol%) and its subsequent influence on the bioactivity of the bioglass were studied in this research. Bioglasses were sintered at 1400, 750, and 550 °C, using both melting and sol-gel methods. The different responses of bioglasses to different sintering temperatures were revealed. Particularly, increased crystallinity was observed in sol-gel-derived bioglass sintered at 750 °C, indicating a denser and more ordered structure. This crystalline architecture facilitated enhanced bioactivity, as demonstrated by increased hydroxyapatite deposition when immersed in simulated body fluid (SBF). Furthermore, superior mechanical properties and biocompatibility were achieved with this temperature regime, making it a prime candidate for bone regeneration applications. The bioglass sintered at 750 °C exhibited an accelerated degradation rate associated with its porosity, potentially contributing to faster material resorption in vivo. Its antibacterial efficacy against <i>E. coli</i> and <i>S. aureus</i> was also noted, and in vitro studies with MTT assay confirmed that the optimized sol-gel bioglass meets biocompatibility standards. These findings highlight the potential of fine-tuning the sintering temperature to modulate the crystallinity of bioglasses, thereby enhancing their application scope in bone tissue engineering.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"289 - 310"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The structural, mechanical, and biological variation of silica bioglasses obtained by different sintering temperatures\",\"authors\":\"M. Sarmast Sh, A. B. Dayang Radiah, D. A. Hoey, N. Abdullah, H. S. Zainuddin, S. Kamarudin\",\"doi\":\"10.1007/s10971-024-06480-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The challenges of forming a crystalline phase within 45S5 Bioglass<sup>®</sup> (45% SiO<sub>2</sub>-24.5% CaO-24.5% Na<sub>2</sub>O-6% P<sub>2</sub>O<sub>5</sub> mol%) and its subsequent influence on the bioactivity of the bioglass were studied in this research. Bioglasses were sintered at 1400, 750, and 550 °C, using both melting and sol-gel methods. The different responses of bioglasses to different sintering temperatures were revealed. Particularly, increased crystallinity was observed in sol-gel-derived bioglass sintered at 750 °C, indicating a denser and more ordered structure. This crystalline architecture facilitated enhanced bioactivity, as demonstrated by increased hydroxyapatite deposition when immersed in simulated body fluid (SBF). Furthermore, superior mechanical properties and biocompatibility were achieved with this temperature regime, making it a prime candidate for bone regeneration applications. The bioglass sintered at 750 °C exhibited an accelerated degradation rate associated with its porosity, potentially contributing to faster material resorption in vivo. Its antibacterial efficacy against <i>E. coli</i> and <i>S. aureus</i> was also noted, and in vitro studies with MTT assay confirmed that the optimized sol-gel bioglass meets biocompatibility standards. These findings highlight the potential of fine-tuning the sintering temperature to modulate the crystallinity of bioglasses, thereby enhancing their application scope in bone tissue engineering.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 1\",\"pages\":\"289 - 310\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06480-z\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06480-z","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
The structural, mechanical, and biological variation of silica bioglasses obtained by different sintering temperatures
The challenges of forming a crystalline phase within 45S5 Bioglass® (45% SiO2-24.5% CaO-24.5% Na2O-6% P2O5 mol%) and its subsequent influence on the bioactivity of the bioglass were studied in this research. Bioglasses were sintered at 1400, 750, and 550 °C, using both melting and sol-gel methods. The different responses of bioglasses to different sintering temperatures were revealed. Particularly, increased crystallinity was observed in sol-gel-derived bioglass sintered at 750 °C, indicating a denser and more ordered structure. This crystalline architecture facilitated enhanced bioactivity, as demonstrated by increased hydroxyapatite deposition when immersed in simulated body fluid (SBF). Furthermore, superior mechanical properties and biocompatibility were achieved with this temperature regime, making it a prime candidate for bone regeneration applications. The bioglass sintered at 750 °C exhibited an accelerated degradation rate associated with its porosity, potentially contributing to faster material resorption in vivo. Its antibacterial efficacy against E. coli and S. aureus was also noted, and in vitro studies with MTT assay confirmed that the optimized sol-gel bioglass meets biocompatibility standards. These findings highlight the potential of fine-tuning the sintering temperature to modulate the crystallinity of bioglasses, thereby enhancing their application scope in bone tissue engineering.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.