用于蓝光 LED 的掺钒氧化锌薄膜的结构、纳米纹理和光学研究

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-09-06 DOI:10.1007/s10971-024-06517-3
Apoorva Katoch, Navneet Kaur, Davinder Kumar, Balraj Singh, Vandana Shinde, Raminder Kaur
{"title":"用于蓝光 LED 的掺钒氧化锌薄膜的结构、纳米纹理和光学研究","authors":"Apoorva Katoch,&nbsp;Navneet Kaur,&nbsp;Davinder Kumar,&nbsp;Balraj Singh,&nbsp;Vandana Shinde,&nbsp;Raminder Kaur","doi":"10.1007/s10971-024-06517-3","DOIUrl":null,"url":null,"abstract":"<div><p>The judicious use of transition metals, notably vanadium (V), is critical to improving zinc oxide (ZnO) photoelectric performance. This research reveals the transforming effect of different V doping levels on zinc oxide (V:ZnO) thin films precisely manufactured using a sol-gel dip-coating process. X-ray diffraction (XRD) reveals the evolving characteristics of the films, revealing a shift towards increased structural coherence and preferred orientation as V doping concentrations increase. Scanning electron microscopy (SEM) and its nano texture fractal studies reveal a gradual refinement in the texture and arrangement of V:ZnO films with increased doping levels. The effective V doping inside the ZnO thin films is confirmed by energy dispersive spectroscopy (EDS). Furthermore, the ultraviolet-visible (UV-Vis) absorption coefficient increases when the Urbach energy (E<sub>U</sub>) increases and the energy gap (E<sub>g</sub>) decreases. Notably, V:ZnO displays exceptional emissions in the intrinsic excitation region at 300 <i>nm</i>and within the defect emission range of 380–650 <i>nm</i> at 3% dopingmaking it a promising candidate for blue LED applications. However, care is advised since extensive doping may impair the photoluminescence properties of ZnO. Urbach tails in weak absorption region decreased with increasing % of V in ZnO. Urbach energies (E<sub>u</sub>) were in the 0.32–0.52 meV range for as-deposited and annealed films. This was used to account for the disorder of the films—an inverse relation was observed between Urbach energy and optical band energy as a result of doping. Research findings presented in this work give significant information on the complexities of V doping in ZnO, paving the way for advanced optoelectronic applications, particularly in blue LEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 2","pages":"332 - 347"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural, nano texture, and optical study of Vanadium-doped zinc oxide thin films for blue LEDs\",\"authors\":\"Apoorva Katoch,&nbsp;Navneet Kaur,&nbsp;Davinder Kumar,&nbsp;Balraj Singh,&nbsp;Vandana Shinde,&nbsp;Raminder Kaur\",\"doi\":\"10.1007/s10971-024-06517-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The judicious use of transition metals, notably vanadium (V), is critical to improving zinc oxide (ZnO) photoelectric performance. This research reveals the transforming effect of different V doping levels on zinc oxide (V:ZnO) thin films precisely manufactured using a sol-gel dip-coating process. X-ray diffraction (XRD) reveals the evolving characteristics of the films, revealing a shift towards increased structural coherence and preferred orientation as V doping concentrations increase. Scanning electron microscopy (SEM) and its nano texture fractal studies reveal a gradual refinement in the texture and arrangement of V:ZnO films with increased doping levels. The effective V doping inside the ZnO thin films is confirmed by energy dispersive spectroscopy (EDS). Furthermore, the ultraviolet-visible (UV-Vis) absorption coefficient increases when the Urbach energy (E<sub>U</sub>) increases and the energy gap (E<sub>g</sub>) decreases. Notably, V:ZnO displays exceptional emissions in the intrinsic excitation region at 300 <i>nm</i>and within the defect emission range of 380–650 <i>nm</i> at 3% dopingmaking it a promising candidate for blue LED applications. However, care is advised since extensive doping may impair the photoluminescence properties of ZnO. Urbach tails in weak absorption region decreased with increasing % of V in ZnO. Urbach energies (E<sub>u</sub>) were in the 0.32–0.52 meV range for as-deposited and annealed films. This was used to account for the disorder of the films—an inverse relation was observed between Urbach energy and optical band energy as a result of doping. Research findings presented in this work give significant information on the complexities of V doping in ZnO, paving the way for advanced optoelectronic applications, particularly in blue LEDs.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 2\",\"pages\":\"332 - 347\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06517-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06517-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

合理使用过渡金属,特别是钒(V),对于提高氧化锌(ZnO)的光电性能至关重要。这项研究揭示了不同钒掺杂水平对采用溶胶-凝胶浸涂工艺精确制造的氧化锌(V:ZnO)薄膜的转化效应。X 射线衍射 (XRD) 揭示了薄膜不断变化的特性,显示出随着 V 掺杂浓度的增加,薄膜的结构一致性和优先取向性也在增加。扫描电子显微镜(SEM)及其纳米纹理分形研究显示,随着掺杂水平的提高,氧化锌薄膜的纹理和排列逐渐细化。能量色散光谱(EDS)证实了氧化锌薄膜中有效的钒掺杂。此外,当乌尔巴赫能(EU)增加、能隙(Eg)减小时,紫外可见(UV-Vis)吸收系数也会增加。值得注意的是,在掺杂 3% 时,V:ZnO 在 300 纳米的本征激发区域和 380-650 纳米的缺陷发射范围内显示出卓越的发射性能,使其成为蓝光 LED 应用的理想候选材料。然而,由于大量掺杂可能会损害氧化锌的光致发光特性,因此应谨慎使用。随着氧化锌中 V 含量的增加,弱吸收区的 Urbach 尾随也随之减少。淀积和退火薄膜的厄巴赫能量(Eu)在 0.32-0.52 meV 范围内。这可以用来解释薄膜的无序性--由于掺杂,观察到厄巴赫能和光带能之间存在反比关系。这项研究成果提供了有关氧化锌中掺杂 V 的复杂性的重要信息,为先进的光电应用,尤其是蓝光 LED 的应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural, nano texture, and optical study of Vanadium-doped zinc oxide thin films for blue LEDs

The judicious use of transition metals, notably vanadium (V), is critical to improving zinc oxide (ZnO) photoelectric performance. This research reveals the transforming effect of different V doping levels on zinc oxide (V:ZnO) thin films precisely manufactured using a sol-gel dip-coating process. X-ray diffraction (XRD) reveals the evolving characteristics of the films, revealing a shift towards increased structural coherence and preferred orientation as V doping concentrations increase. Scanning electron microscopy (SEM) and its nano texture fractal studies reveal a gradual refinement in the texture and arrangement of V:ZnO films with increased doping levels. The effective V doping inside the ZnO thin films is confirmed by energy dispersive spectroscopy (EDS). Furthermore, the ultraviolet-visible (UV-Vis) absorption coefficient increases when the Urbach energy (EU) increases and the energy gap (Eg) decreases. Notably, V:ZnO displays exceptional emissions in the intrinsic excitation region at 300 nmand within the defect emission range of 380–650 nm at 3% dopingmaking it a promising candidate for blue LED applications. However, care is advised since extensive doping may impair the photoluminescence properties of ZnO. Urbach tails in weak absorption region decreased with increasing % of V in ZnO. Urbach energies (Eu) were in the 0.32–0.52 meV range for as-deposited and annealed films. This was used to account for the disorder of the films—an inverse relation was observed between Urbach energy and optical band energy as a result of doping. Research findings presented in this work give significant information on the complexities of V doping in ZnO, paving the way for advanced optoelectronic applications, particularly in blue LEDs.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1