实现气凝胶快速常压干燥制备的原位酸催化策略

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-08-16 DOI:10.1007/s10971-024-06518-2
Zun Zhao, Yuelei Pan, Mingyuan Yan, Yueyue Xiao, Hui Yang, Xudong Cheng
{"title":"实现气凝胶快速常压干燥制备的原位酸催化策略","authors":"Zun Zhao,&nbsp;Yuelei Pan,&nbsp;Mingyuan Yan,&nbsp;Yueyue Xiao,&nbsp;Hui Yang,&nbsp;Xudong Cheng","doi":"10.1007/s10971-024-06518-2","DOIUrl":null,"url":null,"abstract":"<div><p>Aerogel possesses distinctive features rendering it widely applicable in thermal insulation. Nevertheless, supercritical fluid drying (SCFD) method and freeze-drying employed for aerogels necessitates the complex process, resulting in heightened energy consumption and more risk. To achieve the cost-effective preparation of silica aerogel, we introduce an in-situ acid catalysis strategy for rapidly crafting high-performance SiO<sub>2</sub> aerogel materials under ambient conditions. The resultant SiO<sub>2</sub> aerogels exhibit remarkable porosity (95%) and a substantial specific surface area (759 m²/g). Furthermore, SiO<sub>2</sub> aerogel composites display low thermal conductivity (0.015 W·m<sup>−1</sup> K<sup>−1</sup>), coupled with commendable mechanical property. More importantly, we reveal the mechanism of the in-situ acid catalysis (ISAC) strategy. The entire production cycle of SiO<sub>2</sub> aerogel composites and powder is only 6 and 4 h respectively, which greatly reduces the preparation time while ensuring excellent performances. This study introduces a novel approach for the industrial, low-cost, and rapid preparation of SiO<sub>2</sub> aerogel materials through ambient pressure drying.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"112 1","pages":"127 - 139"},"PeriodicalIF":2.3000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-situ acid catalysis strategy to achieve rapid ambient pressure drying preparation of aerogels\",\"authors\":\"Zun Zhao,&nbsp;Yuelei Pan,&nbsp;Mingyuan Yan,&nbsp;Yueyue Xiao,&nbsp;Hui Yang,&nbsp;Xudong Cheng\",\"doi\":\"10.1007/s10971-024-06518-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aerogel possesses distinctive features rendering it widely applicable in thermal insulation. Nevertheless, supercritical fluid drying (SCFD) method and freeze-drying employed for aerogels necessitates the complex process, resulting in heightened energy consumption and more risk. To achieve the cost-effective preparation of silica aerogel, we introduce an in-situ acid catalysis strategy for rapidly crafting high-performance SiO<sub>2</sub> aerogel materials under ambient conditions. The resultant SiO<sub>2</sub> aerogels exhibit remarkable porosity (95%) and a substantial specific surface area (759 m²/g). Furthermore, SiO<sub>2</sub> aerogel composites display low thermal conductivity (0.015 W·m<sup>−1</sup> K<sup>−1</sup>), coupled with commendable mechanical property. More importantly, we reveal the mechanism of the in-situ acid catalysis (ISAC) strategy. The entire production cycle of SiO<sub>2</sub> aerogel composites and powder is only 6 and 4 h respectively, which greatly reduces the preparation time while ensuring excellent performances. This study introduces a novel approach for the industrial, low-cost, and rapid preparation of SiO<sub>2</sub> aerogel materials through ambient pressure drying.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":664,\"journal\":{\"name\":\"Journal of Sol-Gel Science and Technology\",\"volume\":\"112 1\",\"pages\":\"127 - 139\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sol-Gel Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10971-024-06518-2\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06518-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

气凝胶具有独特的特性,可广泛应用于隔热领域。然而,气凝胶采用的超临界流体干燥(SCFD)法和冷冻干燥法工艺复杂,能耗高,风险大。为了实现经济高效地制备二氧化硅气凝胶,我们引入了一种原位酸催化策略,用于在环境条件下快速制备高性能二氧化硅气凝胶材料。制备出的二氧化硅气凝胶具有显著的孔隙率(95%)和巨大的比表面积(759 m²/g)。此外,二氧化硅气凝胶复合材料还显示出较低的热导率(0.015 W-m-1 K-1)以及值得称赞的机械性能。更重要的是,我们揭示了原位酸催化(ISAC)策略的机理。二氧化硅气凝胶复合材料和粉末的整个生产周期分别仅为 6 小时和 4 小时,在确保优异性能的同时大大缩短了制备时间。本研究介绍了一种通过常压干燥工业化、低成本、快速制备SiO2气凝胶材料的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-situ acid catalysis strategy to achieve rapid ambient pressure drying preparation of aerogels

Aerogel possesses distinctive features rendering it widely applicable in thermal insulation. Nevertheless, supercritical fluid drying (SCFD) method and freeze-drying employed for aerogels necessitates the complex process, resulting in heightened energy consumption and more risk. To achieve the cost-effective preparation of silica aerogel, we introduce an in-situ acid catalysis strategy for rapidly crafting high-performance SiO2 aerogel materials under ambient conditions. The resultant SiO2 aerogels exhibit remarkable porosity (95%) and a substantial specific surface area (759 m²/g). Furthermore, SiO2 aerogel composites display low thermal conductivity (0.015 W·m−1 K−1), coupled with commendable mechanical property. More importantly, we reveal the mechanism of the in-situ acid catalysis (ISAC) strategy. The entire production cycle of SiO2 aerogel composites and powder is only 6 and 4 h respectively, which greatly reduces the preparation time while ensuring excellent performances. This study introduces a novel approach for the industrial, low-cost, and rapid preparation of SiO2 aerogel materials through ambient pressure drying.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Enhancing glass surface hydrophobicity: the role of Perfluorooctyltriethoxysilane in advanced surface modification Structural, electrical, and thermal properties of Ba-substituted B(Pb)SCCO superconductors prepared by sol-gel method Role of chelating agents on the sol-gel synthesis of bismuth ferrite nanoparticles Enhanced uniformity of zirconia coating for high power lasers via solvent replacement and PEG-doping Novel molybdenum sulfide-decorated graphitic carbon nitride nanohybrid for enhanced electrochemical oxygen evolution reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1