{"title":"基于计算机视觉和改进有限单元法的自动桥梁分析","authors":"Feiyu Wang, Chenhao Gao, Jian Zhang","doi":"10.1007/s13349-024-00844-3","DOIUrl":null,"url":null,"abstract":"<p>Finite element method (FEM) is one of the essential means of structural analysis. However, the existing finite element modelling relies on manual and design drawings. Therefore, this study proposes an automated method for the numerical analysis of in-service bridges represented by point clouds. The proposed method includes two main innovations: first, an improved finite cell method (FCM) is introduced to generate finite element meshes from point clouds directly. This method eliminates the need for intricate computations involving uniformly distributed grid points as division criteria, significantly reducing the modelling time. Second, to overcome FCM’s limitations in handling structures with multiple material properties, this paper introduces a combination of a three-way topological relationship determination method (TRDM) and RandLA-Net. This approach automatically classifies material properties at integration points within the bridge structure’s physical domain. A model of an arch bridge is subjected to indoor experiments. Through comparative experimentation and ANSYS outcomes, proposed method demonstrates a level of precision akin to that of conventional modelling approaches.</p>","PeriodicalId":48582,"journal":{"name":"Journal of Civil Structural Health Monitoring","volume":"405 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated bridge analysis based on computer vision and improved finite cell method\",\"authors\":\"Feiyu Wang, Chenhao Gao, Jian Zhang\",\"doi\":\"10.1007/s13349-024-00844-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Finite element method (FEM) is one of the essential means of structural analysis. However, the existing finite element modelling relies on manual and design drawings. Therefore, this study proposes an automated method for the numerical analysis of in-service bridges represented by point clouds. The proposed method includes two main innovations: first, an improved finite cell method (FCM) is introduced to generate finite element meshes from point clouds directly. This method eliminates the need for intricate computations involving uniformly distributed grid points as division criteria, significantly reducing the modelling time. Second, to overcome FCM’s limitations in handling structures with multiple material properties, this paper introduces a combination of a three-way topological relationship determination method (TRDM) and RandLA-Net. This approach automatically classifies material properties at integration points within the bridge structure’s physical domain. A model of an arch bridge is subjected to indoor experiments. Through comparative experimentation and ANSYS outcomes, proposed method demonstrates a level of precision akin to that of conventional modelling approaches.</p>\",\"PeriodicalId\":48582,\"journal\":{\"name\":\"Journal of Civil Structural Health Monitoring\",\"volume\":\"405 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Civil Structural Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13349-024-00844-3\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Civil Structural Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13349-024-00844-3","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Automated bridge analysis based on computer vision and improved finite cell method
Finite element method (FEM) is one of the essential means of structural analysis. However, the existing finite element modelling relies on manual and design drawings. Therefore, this study proposes an automated method for the numerical analysis of in-service bridges represented by point clouds. The proposed method includes two main innovations: first, an improved finite cell method (FCM) is introduced to generate finite element meshes from point clouds directly. This method eliminates the need for intricate computations involving uniformly distributed grid points as division criteria, significantly reducing the modelling time. Second, to overcome FCM’s limitations in handling structures with multiple material properties, this paper introduces a combination of a three-way topological relationship determination method (TRDM) and RandLA-Net. This approach automatically classifies material properties at integration points within the bridge structure’s physical domain. A model of an arch bridge is subjected to indoor experiments. Through comparative experimentation and ANSYS outcomes, proposed method demonstrates a level of precision akin to that of conventional modelling approaches.
期刊介绍:
The Journal of Civil Structural Health Monitoring (JCSHM) publishes articles to advance the understanding and the application of health monitoring methods for the condition assessment and management of civil infrastructure systems.
JCSHM serves as a focal point for sharing knowledge and experience in technologies impacting the discipline of Civionics and Civil Structural Health Monitoring, especially in terms of load capacity ratings and service life estimation.