为实现敏感数据研究的民主化,我们应该让合成数据更容易获取

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-09-13 DOI:10.1016/j.patter.2024.101049
Erik-Jan van Kesteren
{"title":"为实现敏感数据研究的民主化,我们应该让合成数据更容易获取","authors":"Erik-Jan van Kesteren","doi":"10.1016/j.patter.2024.101049","DOIUrl":null,"url":null,"abstract":"<p>For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":null,"pages":null},"PeriodicalIF":6.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"To democratize research with sensitive data, we should make synthetic data more accessible\",\"authors\":\"Erik-Jan van Kesteren\",\"doi\":\"10.1016/j.patter.2024.101049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

30 多年来,合成数据一直被视为使敏感数据集可访问的解决方案。然而,尽管开展了大量研究工作,但合成数据作为敏感数据研究工具的应用还很欠缺。本文认为,要在这方面取得进展,数据科学界应集中精力提高现有隐私友好合成技术的可访问性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
To democratize research with sensitive data, we should make synthetic data more accessible

For over 30 years, synthetic data have been heralded as a solution to make sensitive datasets accessible. However, despite much research effort, its adoption as a tool for research with sensitive data is lacking. This article argues that to make progress in this regard, the data science community should focus on improving the accessibility of existing privacy-friendly synthesis techniques.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
AnnoMate: Exploring and annotating integrated molecular data through custom interactive visualizations Balancing innovation and integrity in peer review The stacking cell puzzle To democratize research with sensitive data, we should make synthetic data more accessible FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1