FAIM:面向医疗保健领域可信机器学习的公平感知可解释建模

IF 6.7 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2024-09-12 DOI:10.1016/j.patter.2024.101059
Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu
{"title":"FAIM:面向医疗保健领域可信机器学习的公平感知可解释建模","authors":"Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu","doi":"10.1016/j.patter.2024.101059","DOIUrl":null,"url":null,"abstract":"<p>The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"195 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare\",\"authors\":\"Mingxuan Liu, Yilin Ning, Yuhe Ke, Yuqing Shang, Bibhas Chakraborty, Marcus Eng Hock Ong, Roger Vaughan, Nan Liu\",\"doi\":\"10.1016/j.patter.2024.101059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.</p>\",\"PeriodicalId\":36242,\"journal\":{\"name\":\"Patterns\",\"volume\":\"195 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Patterns\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.patter.2024.101059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2024.101059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

机器学习与医疗保健等高风险领域的整合不断升级,引起了人们对模型公平性的极大关注。我们提出了一个可解释的框架--公平感知可解释建模(FAIM),以在不影响性能的情况下提高模型的公平性,其特点是从一组高性能模型中识别出 "更公平 "模型的交互式界面,并促进数据驱动的证据和临床专业知识的整合,以提高情境公平性。我们利用两个真实世界的数据库--重症监护医学信息市场 IV 急诊部(MIMIC-IV-ED)和新加坡中央医院急诊部(SGH-ED)收集的数据库--预测入院情况,证明了 FAIM 在减少种族和性别交叉偏见方面的价值。对于这两个数据集,FAIM 模型不仅表现出令人满意的判别性能,而且还能显著减轻偏差,这是用公认的公平性指标来衡量的,优于常用的减轻偏差方法。我们的方法证明了在不牺牲性能的情况下提高公平性的可行性,并提供了一种可邀请领域专家参与的建模模式,促进了多学科合作,以实现量身定制的人工智能公平性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FAIM: Fairness-aware interpretable modeling for trustworthy machine learning in healthcare

The escalating integration of machine learning in high-stakes fields such as healthcare raises substantial concerns about model fairness. We propose an interpretable framework, fairness-aware interpretable modeling (FAIM), to improve model fairness without compromising performance, featuring an interactive interface to identify a “fairer” model from a set of high-performing models and promoting the integration of data-driven evidence and clinical expertise to enhance contextualized fairness. We demonstrate FAIM’s value in reducing intersectional biases arising from race and sex by predicting hospital admission with two real-world databases, the Medical Information Mart for Intensive Care IV Emergency Department (MIMIC-IV-ED) and the database collected from Singapore General Hospital Emergency Department (SGH-ED). For both datasets, FAIM models not only exhibit satisfactory discriminatory performance but also significantly mitigate biases as measured by well-established fairness metrics, outperforming commonly used bias mitigation methods. Our approach demonstrates the feasibility of improving fairness without sacrificing performance and provides a modeling mode that invites domain experts to engage, fostering a multidisciplinary effort toward tailored AI fairness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Data-knowledge co-driven innovations in engineering and management. Integration of large language models and federated learning. Decorrelative network architecture for robust electrocardiogram classification. Best holdout assessment is sufficient for cancer transcriptomic model selection. The recent Physics and Chemistry Nobel Prizes, AI, and the convergence of knowledge fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1