超越纳什均衡:通过信念更新虚构游戏实现贝叶斯完全均衡

Qi Ju, Zhemei Fang, Yunfeng Luo
{"title":"超越纳什均衡:通过信念更新虚构游戏实现贝叶斯完全均衡","authors":"Qi Ju, Zhemei Fang, Yunfeng Luo","doi":"arxiv-2409.02706","DOIUrl":null,"url":null,"abstract":"In the domain of machine learning and game theory, the quest for Nash\nEquilibrium (NE) in extensive-form games with incomplete information is\nchallenging yet crucial for enhancing AI's decision-making support under varied\nscenarios. Traditional Counterfactual Regret Minimization (CFR) techniques\nexcel in navigating towards NE, focusing on scenarios where opponents deploy\noptimal strategies. However, the essence of machine learning in strategic game\nplay extends beyond reacting to optimal moves; it encompasses aiding human\ndecision-making in all circumstances. This includes not only crafting responses\nto optimal strategies but also recovering from suboptimal decisions and\ncapitalizing on opponents' errors. Herein lies the significance of\ntransitioning from NE to Bayesian Perfect Equilibrium (BPE), which accounts for\nevery possible condition, including the irrationality of opponents. To bridge this gap, we propose Belief Update Fictitious Play (BUFP), which\ninnovatively blends fictitious play with belief to target BPE, a more\ncomprehensive equilibrium concept than NE. Specifically, through adjusting\niteration stepsizes, BUFP allows for strategic convergence to both NE and BPE.\nFor instance, in our experiments, BUFP(EF) leverages the stepsize of Extensive\nForm Fictitious Play (EFFP) to achieve BPE, outperforming traditional CFR by\nsecuring a 48.53\\% increase in benefits in scenarios characterized by dominated\nstrategies.","PeriodicalId":501316,"journal":{"name":"arXiv - CS - Computer Science and Game Theory","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Nash Equilibrium: Achieving Bayesian Perfect Equilibrium with Belief Update Fictitious Play\",\"authors\":\"Qi Ju, Zhemei Fang, Yunfeng Luo\",\"doi\":\"arxiv-2409.02706\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the domain of machine learning and game theory, the quest for Nash\\nEquilibrium (NE) in extensive-form games with incomplete information is\\nchallenging yet crucial for enhancing AI's decision-making support under varied\\nscenarios. Traditional Counterfactual Regret Minimization (CFR) techniques\\nexcel in navigating towards NE, focusing on scenarios where opponents deploy\\noptimal strategies. However, the essence of machine learning in strategic game\\nplay extends beyond reacting to optimal moves; it encompasses aiding human\\ndecision-making in all circumstances. This includes not only crafting responses\\nto optimal strategies but also recovering from suboptimal decisions and\\ncapitalizing on opponents' errors. Herein lies the significance of\\ntransitioning from NE to Bayesian Perfect Equilibrium (BPE), which accounts for\\nevery possible condition, including the irrationality of opponents. To bridge this gap, we propose Belief Update Fictitious Play (BUFP), which\\ninnovatively blends fictitious play with belief to target BPE, a more\\ncomprehensive equilibrium concept than NE. Specifically, through adjusting\\niteration stepsizes, BUFP allows for strategic convergence to both NE and BPE.\\nFor instance, in our experiments, BUFP(EF) leverages the stepsize of Extensive\\nForm Fictitious Play (EFFP) to achieve BPE, outperforming traditional CFR by\\nsecuring a 48.53\\\\% increase in benefits in scenarios characterized by dominated\\nstrategies.\",\"PeriodicalId\":501316,\"journal\":{\"name\":\"arXiv - CS - Computer Science and Game Theory\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Science and Game Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02706\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Science and Game Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在机器学习和博弈论领域,在信息不完全的广式博弈中寻求纳什均衡(NashEquilibrium,NE)是一项挑战,但对于增强人工智能在各种场景下的决策支持至关重要。传统的 "反事实遗憾最小化"(CFR)技术能很好地实现 NE 导航,重点关注对手部署最佳策略的场景。然而,战略游戏中机器学习的本质不仅仅是对最优策略做出反应,它还包括在所有情况下帮助人类做出决策。这不仅包括对最优策略做出反应,还包括从次优决策中恢复,以及利用对手的失误。从 NE 过渡到贝叶斯完美均衡(BPE)的意义就在于此,后者考虑了所有可能的情况,包括对手的非理性。为了弥补这一差距,我们提出了 "信念更新虚构对局"(BUFP),它创新性地将虚构对局与信念相结合,以贝叶斯完美均衡(BPE)为目标,这是一个比NE更全面的均衡概念。例如,在我们的实验中,BUFP(EF)利用扩展形式虚构博弈(ExtensiveForm Fictitious Play,EFFP)的步长来实现 BPE,其表现优于传统的 CFR,在以主导战略为特征的场景中确保了 48.53% 的收益增长。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Beyond Nash Equilibrium: Achieving Bayesian Perfect Equilibrium with Belief Update Fictitious Play
In the domain of machine learning and game theory, the quest for Nash Equilibrium (NE) in extensive-form games with incomplete information is challenging yet crucial for enhancing AI's decision-making support under varied scenarios. Traditional Counterfactual Regret Minimization (CFR) techniques excel in navigating towards NE, focusing on scenarios where opponents deploy optimal strategies. However, the essence of machine learning in strategic game play extends beyond reacting to optimal moves; it encompasses aiding human decision-making in all circumstances. This includes not only crafting responses to optimal strategies but also recovering from suboptimal decisions and capitalizing on opponents' errors. Herein lies the significance of transitioning from NE to Bayesian Perfect Equilibrium (BPE), which accounts for every possible condition, including the irrationality of opponents. To bridge this gap, we propose Belief Update Fictitious Play (BUFP), which innovatively blends fictitious play with belief to target BPE, a more comprehensive equilibrium concept than NE. Specifically, through adjusting iteration stepsizes, BUFP allows for strategic convergence to both NE and BPE. For instance, in our experiments, BUFP(EF) leverages the stepsize of Extensive Form Fictitious Play (EFFP) to achieve BPE, outperforming traditional CFR by securing a 48.53\% increase in benefits in scenarios characterized by dominated strategies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MALADY: Multiclass Active Learning with Auction Dynamics on Graphs Mechanism Design for Extending the Accessibility of Facilities Common revenue allocation in DMUs with two stages based on DEA cross-efficiency and cooperative game The common revenue allocation based on modified Shapley value and DEA cross-efficiency On Robustness to $k$-wise Independence of Optimal Bayesian Mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1