利用网络流量表示法对不相关约束进行面分离

IF 4.4 3区 管理学 Q1 OPERATIONS RESEARCH & MANAGEMENT SCIENCE Annals of Operations Research Pub Date : 2024-09-13 DOI:10.1007/s10479-024-06264-2
Péter Dobrovoczki, Tamás Kis
{"title":"利用网络流量表示法对不相关约束进行面分离","authors":"Péter Dobrovoczki,&nbsp;Tamás Kis","doi":"10.1007/s10479-024-06264-2","DOIUrl":null,"url":null,"abstract":"<div><p>We present a novel algorithm for separating facet-inducing inequalities for the convex-hull of the union of polytopes representing a disjunctive constraint of special structure. It is required that the union of polytopes admit a certain network flow representation. The algorithm is based on a new, graph theoretic characterization of the facets of the convex-hull. Moreover, we characterize the family of polytopes that are representable by the networks under consideration. We demonstrate the effectiveness of our approach by computational results on a set of benchmark problems.</p></div>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"341 2-3","pages":"825 - 857"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10479-024-06264-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Facet separation for disjunctive constraints with network flow representation\",\"authors\":\"Péter Dobrovoczki,&nbsp;Tamás Kis\",\"doi\":\"10.1007/s10479-024-06264-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present a novel algorithm for separating facet-inducing inequalities for the convex-hull of the union of polytopes representing a disjunctive constraint of special structure. It is required that the union of polytopes admit a certain network flow representation. The algorithm is based on a new, graph theoretic characterization of the facets of the convex-hull. Moreover, we characterize the family of polytopes that are representable by the networks under consideration. We demonstrate the effectiveness of our approach by computational results on a set of benchmark problems.</p></div>\",\"PeriodicalId\":8215,\"journal\":{\"name\":\"Annals of Operations Research\",\"volume\":\"341 2-3\",\"pages\":\"825 - 857\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10479-024-06264-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Operations Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10479-024-06264-2\",\"RegionNum\":3,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://link.springer.com/article/10.1007/s10479-024-06264-2","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新颖的算法,用于分离表示特殊结构的互不相容约束的多边形联合体凸壳的面诱导不等式。该算法要求多边形的联合体具有一定的网络流表示。该算法基于凸壳面的一种新的图论特征。此外,我们还描述了可由所考虑的网络表示的多边形族。我们通过一组基准问题的计算结果证明了我们方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facet separation for disjunctive constraints with network flow representation

We present a novel algorithm for separating facet-inducing inequalities for the convex-hull of the union of polytopes representing a disjunctive constraint of special structure. It is required that the union of polytopes admit a certain network flow representation. The algorithm is based on a new, graph theoretic characterization of the facets of the convex-hull. Moreover, we characterize the family of polytopes that are representable by the networks under consideration. We demonstrate the effectiveness of our approach by computational results on a set of benchmark problems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Operations Research
Annals of Operations Research 管理科学-运筹学与管理科学
CiteScore
7.90
自引率
16.70%
发文量
596
审稿时长
8.4 months
期刊介绍: The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications. In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.
期刊最新文献
Digital operations research models for intelligent machines (industry 4.0) and man-machine (industry 5.0) systems AI-based decision support systems for sustainable business management under circular economy Leveraging interpretable machine learning in intensive care Correction: Power utility maximization with expert opinions at fixed arrival times in a market with hidden gaussian drift Designing resilient supply chain networks: a systematic literature review of mitigation strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1