HfO2 钝化 BiVO4 光阳极上的有效抗腐蚀单原子合金催化剂用于太阳能水持久氧化 (≈800 h)

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-09-13 DOI:10.1002/aenm.202402607
Maheswari Arunachalam, Kug-Seung Lee, Kai Zhu, Soon Hyung Kang
{"title":"HfO2 钝化 BiVO4 光阳极上的有效抗腐蚀单原子合金催化剂用于太阳能水持久氧化 (≈800 h)","authors":"Maheswari Arunachalam, Kug-Seung Lee, Kai Zhu, Soon Hyung Kang","doi":"10.1002/aenm.202402607","DOIUrl":null,"url":null,"abstract":"Green hydrogen (H<sub>2</sub>) production from solar water splitting necessitates photoelectrodes with superior photoelectrochemical (PEC) activity and durability. However, surface defects and photocorrosion instability—especially at high potentials—limit PEC performance and stability. Herein, the prototypical bismuth vanadate (BiVO<sub>4</sub>) photoanode is used to demonstrate a holistic approach to improve photocurrent density and long-term stability. In this approach, high surface-area nanostructuring of BiVO<sub>4</sub> is combined with barium (Ba) doping with semi-crystalline hafnium oxide (HfO<sub>2</sub>) surface passivation and single-atom nickel platinum (NiPt) catalysts. The introduction of Ba<sup>2+</sup> ions into BiVO<sub>4</sub> increases the concentration of conductive V<sup>4+</sup> ions or the ratio of V<sup>4+</sup> ions to oxygen vacancies, avoiding V<sup>5+</sup> dissolution during water oxidation. The semi-crystalline HfO<sub>2</sub>, which serves as a passivation layer, prevents BiVO<sub>4</sub> photocorrosion by suppressing harmful chemical reactions when holes are transferred to the electrolyte. The synergistic use of isolated single-atom and Ni-Pt coordination improves charge transfer at the photoanode/electrolyte interface, leading to enhanced PEC kinetics and stability. As a result, a photoelectrode is demonstrated with ≈6.5 mA cm<sup>−2</sup> at 1.23 V versus a reversible hydrogen electrode (RHE) and continuous operation for 800 h with a negligible degradation rate. This work provides a promising approach to improve photoanodes for PEC H<sub>2</sub> production.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":null,"pages":null},"PeriodicalIF":24.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective Corrosion-Resistant Single-Atom Alloy Catalyst on HfO2-Passivated BiVO4 Photoanode for Durable (≈800 h) Solar Water Oxidation\",\"authors\":\"Maheswari Arunachalam, Kug-Seung Lee, Kai Zhu, Soon Hyung Kang\",\"doi\":\"10.1002/aenm.202402607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Green hydrogen (H<sub>2</sub>) production from solar water splitting necessitates photoelectrodes with superior photoelectrochemical (PEC) activity and durability. However, surface defects and photocorrosion instability—especially at high potentials—limit PEC performance and stability. Herein, the prototypical bismuth vanadate (BiVO<sub>4</sub>) photoanode is used to demonstrate a holistic approach to improve photocurrent density and long-term stability. In this approach, high surface-area nanostructuring of BiVO<sub>4</sub> is combined with barium (Ba) doping with semi-crystalline hafnium oxide (HfO<sub>2</sub>) surface passivation and single-atom nickel platinum (NiPt) catalysts. The introduction of Ba<sup>2+</sup> ions into BiVO<sub>4</sub> increases the concentration of conductive V<sup>4+</sup> ions or the ratio of V<sup>4+</sup> ions to oxygen vacancies, avoiding V<sup>5+</sup> dissolution during water oxidation. The semi-crystalline HfO<sub>2</sub>, which serves as a passivation layer, prevents BiVO<sub>4</sub> photocorrosion by suppressing harmful chemical reactions when holes are transferred to the electrolyte. The synergistic use of isolated single-atom and Ni-Pt coordination improves charge transfer at the photoanode/electrolyte interface, leading to enhanced PEC kinetics and stability. As a result, a photoelectrode is demonstrated with ≈6.5 mA cm<sup>−2</sup> at 1.23 V versus a reversible hydrogen electrode (RHE) and continuous operation for 800 h with a negligible degradation rate. This work provides a promising approach to improve photoanodes for PEC H<sub>2</sub> production.\",\"PeriodicalId\":111,\"journal\":{\"name\":\"Advanced Energy Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":24.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/aenm.202402607\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202402607","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

利用太阳能水分裂生产绿色氢气(H2)需要光电电极具有卓越的光电化学(PEC)活性和耐久性。然而,表面缺陷和光腐蚀不稳定性--尤其是在高电位下--限制了光电化学性能和稳定性。本文利用钒酸铋(BiVO4)光阳极的原型,展示了一种提高光电流密度和长期稳定性的综合方法。在这种方法中,BiVO4 的高表面积纳米结构与钡(Ba)掺杂、半晶体氧化铪(HfO2)表面钝化和单原子镍铂(NiPt)催化剂相结合。在 BiVO4 中引入 Ba2+ 离子可增加导电 V4+ 离子的浓度或 V4+ 离子与氧空位的比例,从而避免 V5+ 在水氧化过程中溶解。作为钝化层的半晶体 HfO2 可在空穴转移到电解质时抑制有害的化学反应,从而防止 BiVO4 光腐蚀。孤立单原子和镍铂配位的协同使用改善了光阳极/电解质界面的电荷转移,从而提高了 PEC 动力学和稳定性。结果表明,这种光电极在 1.23 V 电压下与可逆氢电极(RHE)相比,电流≈6.5 mA cm-2,可连续工作 800 小时,降解率可忽略不计。这项工作为改进 PEC 氢气生产的光阳极提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effective Corrosion-Resistant Single-Atom Alloy Catalyst on HfO2-Passivated BiVO4 Photoanode for Durable (≈800 h) Solar Water Oxidation
Green hydrogen (H2) production from solar water splitting necessitates photoelectrodes with superior photoelectrochemical (PEC) activity and durability. However, surface defects and photocorrosion instability—especially at high potentials—limit PEC performance and stability. Herein, the prototypical bismuth vanadate (BiVO4) photoanode is used to demonstrate a holistic approach to improve photocurrent density and long-term stability. In this approach, high surface-area nanostructuring of BiVO4 is combined with barium (Ba) doping with semi-crystalline hafnium oxide (HfO2) surface passivation and single-atom nickel platinum (NiPt) catalysts. The introduction of Ba2+ ions into BiVO4 increases the concentration of conductive V4+ ions or the ratio of V4+ ions to oxygen vacancies, avoiding V5+ dissolution during water oxidation. The semi-crystalline HfO2, which serves as a passivation layer, prevents BiVO4 photocorrosion by suppressing harmful chemical reactions when holes are transferred to the electrolyte. The synergistic use of isolated single-atom and Ni-Pt coordination improves charge transfer at the photoanode/electrolyte interface, leading to enhanced PEC kinetics and stability. As a result, a photoelectrode is demonstrated with ≈6.5 mA cm−2 at 1.23 V versus a reversible hydrogen electrode (RHE) and continuous operation for 800 h with a negligible degradation rate. This work provides a promising approach to improve photoanodes for PEC H2 production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Redox Mediator as Highly Efficient Charge Storage Electrode Additive for All-Solid-State Lithium Metal Batteries A Synergistic Zincophilic and Hydrophobic Supramolecule Shielding Layer for Actualizing Long-Term Zinc-Ion Batteries Electrostatic Shielding Engineering for Stable Zn Metal Anodes 2D Graphene-Like Carbon Coated Solid Electrolyte for Reducing Inhomogeneous Reactions of All-Solid-State Batteries Sodium-Difluoro(oxalato)Borate-Based Electrolytes for Long-Term Cycle Life and Enhanced Low-Temperature Sodium-Ion Batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1