{"title":"关于热带气旋加强的最佳初始内核大小:理想化数值研究","authors":"Rong Fei, Yuqing Wang","doi":"10.1007/s00376-024-3296-6","DOIUrl":null,"url":null,"abstract":"<p>Recent observational and numerical studies have revealed the dependence of the intensification rate on the inner-core size of tropical cyclones (TCs). In this study, with the initial inner-core size (i.e., the radius of maximum wind—RMW) varied from 20–180 km in idealized simulations using two different numerical models, we found a nonmonotonic dependence of the lifetime maximum intensification rate (LMIR) on the inner-core size. Namely, there is an optimal inner-core size for the LMIR of a TC. Tangential wind budget analysis shows that, compared to large TCs, small TCs have large inward flux of absolute vorticity due to large absolute vorticity inside the RMW. However, small TCs also suffer from strong lateral diffusion across the eyewall, which partly offsets the positive contribution from large inward flux of absolute vorticity. These two competing processes ultimately lead to the TC with an intermediate initial inner-core size having the largest LMIR. Results from sensitivity experiments show that the optimal size varies in the range of 40–120 km and increases with higher sea surface temperature, lower latitude, larger horizontal mixing length, and weaker initial TC intensity. The 40–120 km RMW corresponds to the inner-core size most commonly found for intensifying TCs in observations, suggesting the natural selection of initial TC size for intensification. This study highlights the importance of accurate representation of TC inner-core size to TC intensity forecasts by numerical weather prediction models.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"24 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Optimal Initial Inner-Core Size for Tropical Cyclone Intensification: An Idealized Numerical Study\",\"authors\":\"Rong Fei, Yuqing Wang\",\"doi\":\"10.1007/s00376-024-3296-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent observational and numerical studies have revealed the dependence of the intensification rate on the inner-core size of tropical cyclones (TCs). In this study, with the initial inner-core size (i.e., the radius of maximum wind—RMW) varied from 20–180 km in idealized simulations using two different numerical models, we found a nonmonotonic dependence of the lifetime maximum intensification rate (LMIR) on the inner-core size. Namely, there is an optimal inner-core size for the LMIR of a TC. Tangential wind budget analysis shows that, compared to large TCs, small TCs have large inward flux of absolute vorticity due to large absolute vorticity inside the RMW. However, small TCs also suffer from strong lateral diffusion across the eyewall, which partly offsets the positive contribution from large inward flux of absolute vorticity. These two competing processes ultimately lead to the TC with an intermediate initial inner-core size having the largest LMIR. Results from sensitivity experiments show that the optimal size varies in the range of 40–120 km and increases with higher sea surface temperature, lower latitude, larger horizontal mixing length, and weaker initial TC intensity. The 40–120 km RMW corresponds to the inner-core size most commonly found for intensifying TCs in observations, suggesting the natural selection of initial TC size for intensification. This study highlights the importance of accurate representation of TC inner-core size to TC intensity forecasts by numerical weather prediction models.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-024-3296-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3296-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
On the Optimal Initial Inner-Core Size for Tropical Cyclone Intensification: An Idealized Numerical Study
Recent observational and numerical studies have revealed the dependence of the intensification rate on the inner-core size of tropical cyclones (TCs). In this study, with the initial inner-core size (i.e., the radius of maximum wind—RMW) varied from 20–180 km in idealized simulations using two different numerical models, we found a nonmonotonic dependence of the lifetime maximum intensification rate (LMIR) on the inner-core size. Namely, there is an optimal inner-core size for the LMIR of a TC. Tangential wind budget analysis shows that, compared to large TCs, small TCs have large inward flux of absolute vorticity due to large absolute vorticity inside the RMW. However, small TCs also suffer from strong lateral diffusion across the eyewall, which partly offsets the positive contribution from large inward flux of absolute vorticity. These two competing processes ultimately lead to the TC with an intermediate initial inner-core size having the largest LMIR. Results from sensitivity experiments show that the optimal size varies in the range of 40–120 km and increases with higher sea surface temperature, lower latitude, larger horizontal mixing length, and weaker initial TC intensity. The 40–120 km RMW corresponds to the inner-core size most commonly found for intensifying TCs in observations, suggesting the natural selection of initial TC size for intensification. This study highlights the importance of accurate representation of TC inner-core size to TC intensity forecasts by numerical weather prediction models.
期刊介绍:
Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines.
Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.