微波高层探测数据在 CMA-GFS 中的优化同化

IF 6.5 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Advances in Atmospheric Sciences Pub Date : 2024-08-28 DOI:10.1007/s00376-024-3323-7
Changjiao Dong, Hao Hu, Fuzhong Weng
{"title":"微波高层探测数据在 CMA-GFS 中的优化同化","authors":"Changjiao Dong, Hao Hu, Fuzhong Weng","doi":"10.1007/s00376-024-3323-7","DOIUrl":null,"url":null,"abstract":"<p>Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction (NWP) models by using satellite upper-air sounding channels as anchors. However, since the China Meteorological Administration Global Forecast System (CMA-GFS) has a model top near 0.1 hPa (60 km), the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa. In this study, channels 12–14 of the Advanced Microwave Sounding Unit A (AMSU-A) onboard five satellites of NOAA and METOP, whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS. It is shown that the new “Anchor” approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles. The bias growth rate of simulated upper-level channel observations is reduced to ±0.001 K d<sup>−1</sup>, compared to −0.03 K d<sup>−1</sup> derived from the current dynamic correction scheme. The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.</p>","PeriodicalId":7249,"journal":{"name":"Advances in Atmospheric Sciences","volume":"27 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Assimilation of Microwave Upper-Level Sounding Data in CMA-GFS\",\"authors\":\"Changjiao Dong, Hao Hu, Fuzhong Weng\",\"doi\":\"10.1007/s00376-024-3323-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction (NWP) models by using satellite upper-air sounding channels as anchors. However, since the China Meteorological Administration Global Forecast System (CMA-GFS) has a model top near 0.1 hPa (60 km), the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa. In this study, channels 12–14 of the Advanced Microwave Sounding Unit A (AMSU-A) onboard five satellites of NOAA and METOP, whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS. It is shown that the new “Anchor” approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles. The bias growth rate of simulated upper-level channel observations is reduced to ±0.001 K d<sup>−1</sup>, compared to −0.03 K d<sup>−1</sup> derived from the current dynamic correction scheme. The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.</p>\",\"PeriodicalId\":7249,\"journal\":{\"name\":\"Advances in Atmospheric Sciences\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Atmospheric Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00376-024-3323-7\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00376-024-3323-7","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

为了减少全球数值天气预报(NWP)模式的高层系统偏差,人们提出了各种方法,利用卫星高层探测信道作为锚。然而,由于中国气象局全球预报系统(CMA-GFS)的模式顶在 0.1 hPa(60 km)附近,高层温度偏差在 1 hPa 附近可能超过 4 K,并进一步扩展到 5 hPa。本研究将 NOAA 和 METOP 五颗卫星上的高级微波探测单元 A(AMSU-A)的第 12-14 频道(其加权函数峰值范围为 10 至 2 hPa)全部用作 CMA-GFS 的锚观测。结果表明,新的 "锚 "方法可以在三个月的同化周期内有效减少模式顶附近的偏差及其向下传播。模拟高层信道观测的偏差增长率降低到±0.001 K d-1,而目前的动态校正方案为-0.03 K d-1。相对稳定的偏差极大地改善了高层分析场,从而改善了长达 10 天的全球中程预报,显著减少了 10 百帕以上的温度和位势预报误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Assimilation of Microwave Upper-Level Sounding Data in CMA-GFS

Various approaches have been proposed to minimize the upper-level systematic biases in global numerical weather prediction (NWP) models by using satellite upper-air sounding channels as anchors. However, since the China Meteorological Administration Global Forecast System (CMA-GFS) has a model top near 0.1 hPa (60 km), the upper-level temperature bias may exceed 4 K near 1 hPa and further extend to 5 hPa. In this study, channels 12–14 of the Advanced Microwave Sounding Unit A (AMSU-A) onboard five satellites of NOAA and METOP, whose weighting function peaks range from 10 to 2 hPa are all used as anchor observations in CMA-GFS. It is shown that the new “Anchor” approach can effectively reduce the biases near the model top and their downward propagation in three-month assimilation cycles. The bias growth rate of simulated upper-level channel observations is reduced to ±0.001 K d−1, compared to −0.03 K d−1 derived from the current dynamic correction scheme. The relatively stable bias significantly improves the upper-level analysis field and leads to better global medium-range forecasts up to 10 days with significant reductions in the temperature and geopotential forecast error above 10 hPa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Atmospheric Sciences
Advances in Atmospheric Sciences 地学-气象与大气科学
CiteScore
9.30
自引率
5.20%
发文量
154
审稿时长
6 months
期刊介绍: Advances in Atmospheric Sciences, launched in 1984, aims to rapidly publish original scientific papers on the dynamics, physics and chemistry of the atmosphere and ocean. It covers the latest achievements and developments in the atmospheric sciences, including marine meteorology and meteorology-associated geophysics, as well as the theoretical and practical aspects of these disciplines. Papers on weather systems, numerical weather prediction, climate dynamics and variability, satellite meteorology, remote sensing, air chemistry and the boundary layer, clouds and weather modification, can be found in the journal. Papers describing the application of new mathematics or new instruments are also collected here.
期刊最新文献
Spatiotemporal Evaluation and Future Projection of Diurnal Temperature Range over the Tibetan Plateau in CMIP6 Models Enhanced Cooling Efficiency of Urban Trees on Hotter Summer Days in 70 Cities of China On the Optimal Initial Inner-Core Size for Tropical Cyclone Intensification: An Idealized Numerical Study Improving Satellite-Retrieved Cloud Base Height with Ground-Based Cloud Radar Measurements Effectiveness of Precursor Emission Reductions for the Control of Summertime Ozone and PM2.5 in the Beijing–Tianjin–Hebei Region under Different Meteorological Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1