Gregory N. Morscher, Christopher Ferguson, Sarah Pratt, Jonathan B. Clawson, Seyed Mostafa Razavi, Suresh Subramanian
{"title":"陶瓷基复合材料拉伸试验的声发射精确度","authors":"Gregory N. Morscher, Christopher Ferguson, Sarah Pratt, Jonathan B. Clawson, Seyed Mostafa Razavi, Suresh Subramanian","doi":"10.1111/jace.20104","DOIUrl":null,"url":null,"abstract":"<p>Ceramic matrix composites (CMCs) on one level are excellent materials for acoustic emission (AE) analysis. They are excellent waveguides for AE waveform transmission due to the high modulus to density ratio. CMC inelastic behavior is due to micro- and macrocrack formation from matrix crack interaction with the fibers via a relatively weak fiber/matrix interface which create ideal stress waves. Because of this, AE is an excellent detector of microcracks in general, and most importantly in the case of CMCs, the initial or lowest stress crack formation. This property can be related to long time stressed-oxidation degradation of nonoxide composites, in particular. In addition, AE has been used to effectively determine the stress distribution for matrix cracks which cause the nonlinear stress–strain behavior. However, a key to quantitatively correlating AE with sources is first and foremost to locate where the AE originated. For a tensile test, most AE comes from the near-grip region and the radius region outside the gage area of interest. Outside the gage region AE would not be considered useful data pertaining to stress/strain behavior and must be sorted out from the AE dataset. Location is determined by the difference in time of arrivals (TOAs) of waveforms received on each sensor from a given AE source. Automated TOA techniques such as threshold voltage crossing or Akaike information criteria (AIC) have limitations in overall accuracy of differences in TOA (Δ<i>t</i>) of two different sensors required for location analysis. This study has incorporated several signal filter and enhancement techniques and an approach toward increasing the accuracy of the classic TOA techniques. First TOA was determined for the two sensors of the AE tests “manually” based on first extensional peak of the waveform, this served as the “exact” difference in TOA. Δ<i>t</i>’s were then determined for the various filter/TOA techniques and compared to those from the manual determined Δ<i>t</i>. The best filter/TOA techniques resulted in more than two times better accuracy (defined as percentage of events within 0.1 µs of the exact Δ<i>t</i>) than the conventional threshold crossing or AIC technique.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8556-8571"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20104","citationCount":"0","resultStr":"{\"title\":\"Acoustic emission accuracy from a tensile test of a ceramic matrix composite\",\"authors\":\"Gregory N. Morscher, Christopher Ferguson, Sarah Pratt, Jonathan B. Clawson, Seyed Mostafa Razavi, Suresh Subramanian\",\"doi\":\"10.1111/jace.20104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ceramic matrix composites (CMCs) on one level are excellent materials for acoustic emission (AE) analysis. They are excellent waveguides for AE waveform transmission due to the high modulus to density ratio. CMC inelastic behavior is due to micro- and macrocrack formation from matrix crack interaction with the fibers via a relatively weak fiber/matrix interface which create ideal stress waves. Because of this, AE is an excellent detector of microcracks in general, and most importantly in the case of CMCs, the initial or lowest stress crack formation. This property can be related to long time stressed-oxidation degradation of nonoxide composites, in particular. In addition, AE has been used to effectively determine the stress distribution for matrix cracks which cause the nonlinear stress–strain behavior. However, a key to quantitatively correlating AE with sources is first and foremost to locate where the AE originated. For a tensile test, most AE comes from the near-grip region and the radius region outside the gage area of interest. Outside the gage region AE would not be considered useful data pertaining to stress/strain behavior and must be sorted out from the AE dataset. Location is determined by the difference in time of arrivals (TOAs) of waveforms received on each sensor from a given AE source. Automated TOA techniques such as threshold voltage crossing or Akaike information criteria (AIC) have limitations in overall accuracy of differences in TOA (Δ<i>t</i>) of two different sensors required for location analysis. This study has incorporated several signal filter and enhancement techniques and an approach toward increasing the accuracy of the classic TOA techniques. First TOA was determined for the two sensors of the AE tests “manually” based on first extensional peak of the waveform, this served as the “exact” difference in TOA. Δ<i>t</i>’s were then determined for the various filter/TOA techniques and compared to those from the manual determined Δ<i>t</i>. The best filter/TOA techniques resulted in more than two times better accuracy (defined as percentage of events within 0.1 µs of the exact Δ<i>t</i>) than the conventional threshold crossing or AIC technique.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"8556-8571\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20104\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20104\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20104","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Acoustic emission accuracy from a tensile test of a ceramic matrix composite
Ceramic matrix composites (CMCs) on one level are excellent materials for acoustic emission (AE) analysis. They are excellent waveguides for AE waveform transmission due to the high modulus to density ratio. CMC inelastic behavior is due to micro- and macrocrack formation from matrix crack interaction with the fibers via a relatively weak fiber/matrix interface which create ideal stress waves. Because of this, AE is an excellent detector of microcracks in general, and most importantly in the case of CMCs, the initial or lowest stress crack formation. This property can be related to long time stressed-oxidation degradation of nonoxide composites, in particular. In addition, AE has been used to effectively determine the stress distribution for matrix cracks which cause the nonlinear stress–strain behavior. However, a key to quantitatively correlating AE with sources is first and foremost to locate where the AE originated. For a tensile test, most AE comes from the near-grip region and the radius region outside the gage area of interest. Outside the gage region AE would not be considered useful data pertaining to stress/strain behavior and must be sorted out from the AE dataset. Location is determined by the difference in time of arrivals (TOAs) of waveforms received on each sensor from a given AE source. Automated TOA techniques such as threshold voltage crossing or Akaike information criteria (AIC) have limitations in overall accuracy of differences in TOA (Δt) of two different sensors required for location analysis. This study has incorporated several signal filter and enhancement techniques and an approach toward increasing the accuracy of the classic TOA techniques. First TOA was determined for the two sensors of the AE tests “manually” based on first extensional peak of the waveform, this served as the “exact” difference in TOA. Δt’s were then determined for the various filter/TOA techniques and compared to those from the manual determined Δt. The best filter/TOA techniques resulted in more than two times better accuracy (defined as percentage of events within 0.1 µs of the exact Δt) than the conventional threshold crossing or AIC technique.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.