Clive A. Randall, Hiroshi Nishiyama, Hiroyuki Shimizu
{"title":"过氧化物压电材料和介电材料中的挥发性、非化学计量和大气的影响","authors":"Clive A. Randall, Hiroshi Nishiyama, Hiroyuki Shimizu","doi":"10.1111/jace.20080","DOIUrl":null,"url":null,"abstract":"<p>Defect chemistry that results in the thermal processing of dielectric and piezoelectric films, crystals and ceramics ultimately controls the properties and long-term performance of materials and devices. This paper reviews several thermochemical defect reactions using important perovskite base composition dielectrics including Pb(Zr,Ti)O<sub>3</sub>, (Na,K)NbO<sub>3</sub>, (Bi<sub>0.5</sub>Na<sub>0.5</sub>)TiO<sub>3</sub>‒BaTiO<sub>3</sub>, and Ca(Hf,Ti,Mn)O<sub>3</sub>. Within this group of perovskite-based functional materials, we note ways the point defects can be formed to create non-stoichiometric compositions changing the overall cation-to-anion ratios during the synthesis process. These reactions can be developed with the loss of volatile species such as metal and oxygen ions. The relative concentrations of these can impact the over conductions in terms of the mixed contributions of ionic conductivity from the oxygen vacancies and the electronic conductivity, along with microstructure and properties in some cases.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"7921-7938"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20080","citationCount":"0","resultStr":"{\"title\":\"Impact of volatility, non-stoichiometry, and atmospheres in perovskite piezoelectric and dielectric materials\",\"authors\":\"Clive A. Randall, Hiroshi Nishiyama, Hiroyuki Shimizu\",\"doi\":\"10.1111/jace.20080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Defect chemistry that results in the thermal processing of dielectric and piezoelectric films, crystals and ceramics ultimately controls the properties and long-term performance of materials and devices. This paper reviews several thermochemical defect reactions using important perovskite base composition dielectrics including Pb(Zr,Ti)O<sub>3</sub>, (Na,K)NbO<sub>3</sub>, (Bi<sub>0.5</sub>Na<sub>0.5</sub>)TiO<sub>3</sub>‒BaTiO<sub>3</sub>, and Ca(Hf,Ti,Mn)O<sub>3</sub>. Within this group of perovskite-based functional materials, we note ways the point defects can be formed to create non-stoichiometric compositions changing the overall cation-to-anion ratios during the synthesis process. These reactions can be developed with the loss of volatile species such as metal and oxygen ions. The relative concentrations of these can impact the over conductions in terms of the mixed contributions of ionic conductivity from the oxygen vacancies and the electronic conductivity, along with microstructure and properties in some cases.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"7921-7938\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jace.20080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20080\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Impact of volatility, non-stoichiometry, and atmospheres in perovskite piezoelectric and dielectric materials
Defect chemistry that results in the thermal processing of dielectric and piezoelectric films, crystals and ceramics ultimately controls the properties and long-term performance of materials and devices. This paper reviews several thermochemical defect reactions using important perovskite base composition dielectrics including Pb(Zr,Ti)O3, (Na,K)NbO3, (Bi0.5Na0.5)TiO3‒BaTiO3, and Ca(Hf,Ti,Mn)O3. Within this group of perovskite-based functional materials, we note ways the point defects can be formed to create non-stoichiometric compositions changing the overall cation-to-anion ratios during the synthesis process. These reactions can be developed with the loss of volatile species such as metal and oxygen ions. The relative concentrations of these can impact the over conductions in terms of the mixed contributions of ionic conductivity from the oxygen vacancies and the electronic conductivity, along with microstructure and properties in some cases.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.