{"title":"石墨烯对镁钙合金机械性能、腐蚀行为和生物相容性的影响","authors":"Song-Jeng Huang, Chih-Feng Wang, Murugan Subramani, Sivakumar Selvaraju, Veeramanikandan Rajagopal, Chao-Ching Chiang, Fang-Fu Fan","doi":"10.1111/jace.20091","DOIUrl":null,"url":null,"abstract":"<p>This investigation explores the impact of incorporating graphene (Gr) reinforcement on the microstructure, mechanical properties, corrosion behavior, and biocompatibility of a composite derived from a magnesium–calcium (Mg–Ca) alloy. Two concentrations of Gr (0.1% and 0.2%) were introduced to an Mg–Ca alloy. The addition of 0.1% Gr resulted in a refined grain structure, enhancing both tensile and compression strength. However, electrochemical analysis and immersion testing revealed an increase in corrosion rate (<span></span><math>\n <semantics>\n <msub>\n <mi>R</mi>\n <mi>w</mi>\n </msub>\n <annotation>${R}_w$</annotation>\n </semantics></math>) with the incorporation of Gr. Although the corrosion rate of the Mg–Ca-0.1%Gr composite was comparable to that of Mg–Ca, the Mg–Ca–0.2%Gr exhibited higher corrosion rates attributed to the enhancement of micro-galvanic corrosion. Interestingly, cell survival rate tests demonstrated improved biocompatibility for the Mg–Ca–0.1%Gr sample, emphasizing its potential for applications in the biomedical domain, which requires enhanced mechanical strength, corrosion resistance, and biocompatibility.</p>","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":"107 12","pages":"8312-8327"},"PeriodicalIF":3.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The impact of graphene on the mechanical properties, corrosion behavior, and biocompatibility of an Mg–Ca alloy\",\"authors\":\"Song-Jeng Huang, Chih-Feng Wang, Murugan Subramani, Sivakumar Selvaraju, Veeramanikandan Rajagopal, Chao-Ching Chiang, Fang-Fu Fan\",\"doi\":\"10.1111/jace.20091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This investigation explores the impact of incorporating graphene (Gr) reinforcement on the microstructure, mechanical properties, corrosion behavior, and biocompatibility of a composite derived from a magnesium–calcium (Mg–Ca) alloy. Two concentrations of Gr (0.1% and 0.2%) were introduced to an Mg–Ca alloy. The addition of 0.1% Gr resulted in a refined grain structure, enhancing both tensile and compression strength. However, electrochemical analysis and immersion testing revealed an increase in corrosion rate (<span></span><math>\\n <semantics>\\n <msub>\\n <mi>R</mi>\\n <mi>w</mi>\\n </msub>\\n <annotation>${R}_w$</annotation>\\n </semantics></math>) with the incorporation of Gr. Although the corrosion rate of the Mg–Ca-0.1%Gr composite was comparable to that of Mg–Ca, the Mg–Ca–0.2%Gr exhibited higher corrosion rates attributed to the enhancement of micro-galvanic corrosion. Interestingly, cell survival rate tests demonstrated improved biocompatibility for the Mg–Ca–0.1%Gr sample, emphasizing its potential for applications in the biomedical domain, which requires enhanced mechanical strength, corrosion resistance, and biocompatibility.</p>\",\"PeriodicalId\":200,\"journal\":{\"name\":\"Journal of the American Ceramic Society\",\"volume\":\"107 12\",\"pages\":\"8312-8327\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jace.20091\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jace.20091","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究探讨了加入石墨烯(Gr)增强材料对镁-钙(Mg-Ca)合金复合材料的微观结构、机械性能、腐蚀行为和生物相容性的影响。在镁钙合金中引入了两种浓度的 Gr(0.1% 和 0.2%)。添加 0.1% Gr 后,晶粒结构更加细化,抗拉强度和抗压强度都有所提高。然而,电化学分析和浸泡测试表明,加入 Gr 后腐蚀速率()会增加。虽然 Mg-Ca-0.1%Gr 复合材料的腐蚀速率与 Mg-Ca 相当,但 Mg-Ca-0.2%Gr 表现出更高的腐蚀速率,这归因于微电蚀作用的增强。有趣的是,细胞存活率测试表明,Mg-Ca-0.1%Gr 样品的生物相容性得到了改善,强调了其在生物医学领域的应用潜力,该领域需要更高的机械强度、耐腐蚀性和生物相容性。
The impact of graphene on the mechanical properties, corrosion behavior, and biocompatibility of an Mg–Ca alloy
This investigation explores the impact of incorporating graphene (Gr) reinforcement on the microstructure, mechanical properties, corrosion behavior, and biocompatibility of a composite derived from a magnesium–calcium (Mg–Ca) alloy. Two concentrations of Gr (0.1% and 0.2%) were introduced to an Mg–Ca alloy. The addition of 0.1% Gr resulted in a refined grain structure, enhancing both tensile and compression strength. However, electrochemical analysis and immersion testing revealed an increase in corrosion rate () with the incorporation of Gr. Although the corrosion rate of the Mg–Ca-0.1%Gr composite was comparable to that of Mg–Ca, the Mg–Ca–0.2%Gr exhibited higher corrosion rates attributed to the enhancement of micro-galvanic corrosion. Interestingly, cell survival rate tests demonstrated improved biocompatibility for the Mg–Ca–0.1%Gr sample, emphasizing its potential for applications in the biomedical domain, which requires enhanced mechanical strength, corrosion resistance, and biocompatibility.
期刊介绍:
The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials.
Papers on fundamental ceramic and glass science are welcome including those in the following areas:
Enabling materials for grand challenges[...]
Materials design, selection, synthesis and processing methods[...]
Characterization of compositions, structures, defects, and properties along with new methods [...]
Mechanisms, Theory, Modeling, and Simulation[...]
JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.