与原特提斯和古特提斯演化有关的古生代多期岩浆事件:中国西北部东阿尔金山造山带侵入岩的启示

IF 4.1 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Earth Science Pub Date : 2024-08-14 DOI:10.1007/s12583-021-1603-z
Jiyong Li, Yanqing Xia, Xilong Zhang, Haoyuan Jiang, Tianzhu Lei, Yongchao Wang, Yanhong Liu, Shanpin Liu, Xiaobao Zhang
{"title":"与原特提斯和古特提斯演化有关的古生代多期岩浆事件:中国西北部东阿尔金山造山带侵入岩的启示","authors":"Jiyong Li, Yanqing Xia, Xilong Zhang, Haoyuan Jiang, Tianzhu Lei, Yongchao Wang, Yanhong Liu, Shanpin Liu, Xiaobao Zhang","doi":"10.1007/s12583-021-1603-z","DOIUrl":null,"url":null,"abstract":"<p>Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ∼426, ∼376–373 and ∼269–254 Ma. The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen. The ∼426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes, suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate. Next, the ∼376–373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting. Finally, the ∼254 Ma diabase dykes intruded into the ∼269 Ma granitoids, which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction. Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau. The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"28 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China\",\"authors\":\"Jiyong Li, Yanqing Xia, Xilong Zhang, Haoyuan Jiang, Tianzhu Lei, Yongchao Wang, Yanhong Liu, Shanpin Liu, Xiaobao Zhang\",\"doi\":\"10.1007/s12583-021-1603-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ∼426, ∼376–373 and ∼269–254 Ma. The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen. The ∼426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes, suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate. Next, the ∼376–373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting. Finally, the ∼254 Ma diabase dykes intruded into the ∼269 Ma granitoids, which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction. Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau. The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-021-1603-z\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-021-1603-z","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

分布在阿尔钦造山带的大量岩浆-长石侵入体记录了与原特提斯和古特提斯演化有关的造山运动历史。对阿尔廷造山带东部侵入岩的锆石U-Pb年代测定发现,至少有三个主要的构造-岩浆期,年代分别为426、376-373和269-254 Ma。前两个岩浆置入期与阿尔金山造山带碰撞后的岩浆活动相对应。426 Ma的花岗岩具有黑云母特征和富集的同位素,表明它们起源于南阿尔丁洋板块断裂后天体层地幔上涌所引起的增厚的下部大陆地壳的部分熔融。其次,376-373 Ma岩浆岩-中间岩和共生花岗岩代表了一个大的热事件,涉及地幔熔融和碰撞后延伸环境中新的幼年下大陆地壳熔融。最后,∼254 Ma辉长岩堤侵入∼269 Ma花岗岩,这与古特提斯洋俯冲造成的广泛的晚古生代岩浆活动有关。阿尔金山造山带碰撞后的岩浆活动大大加深了人们对青藏高原北部构造-岩浆演化的认识。古特提斯洋俯冲的渗透影响比以前想象的更为广泛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China

Abundant mafic-felsic intrusions distributed in the Altyn Orogen record orogenic histories related to Proto-Tethys and Paleo-Tethys evolution. Zircon U-Pb dating of the intrusive rocks in the eastern Altyn Orogen identifies at least three major tectono-magmatic episodes, yielding ages of ∼426, ∼376–373 and ∼269–254 Ma. The first two emplacement episodes correspond to the post-collisional magmatism in the Altyn Orogen. The ∼426 Ma granitoids possess adakitic characteristics coupled with enriched isotopes, suggesting that they originated from partial melting of thickened lower continental crust induced by upwelling asthenospheric mantle after slab break-off of the South Altyn Ocean Plate. Next, the ∼376–373 Ma mafic-intermediate rocks and coeval granitoids represent a large thermal event that involved mantle melting with induced new juvenile lower continental crust melting in a post-collisional extensional setting. Finally, the ∼254 Ma diabase dykes intruded into the ∼269 Ma granitoids, which were related to the widespread Late Paleozoic magmatism resulting from Paleo-Tethys Ocean subduction. Post-collisional magmatism in the Altyn Orogen significantly enhances understanding of the tectono-magmatic evolution in the northern Tibetan Plateau. The penetrative influence of Paleo-Tethys Ocean subduction was more extensive than previously thought.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Earth Science
Journal of Earth Science 地学-地球科学综合
CiteScore
5.50
自引率
12.10%
发文量
128
审稿时长
4.5 months
期刊介绍: Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences. Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event. The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.
期刊最新文献
Quaternary Activity Characteristics and Regional Tectonic Significance of the Jiulong Fault in Jiujiang, Jiangxi Province, China Application of Detrital Apatite U-Pb Geochronology and Trace Elements for Provenance Analysis, Insights from a Study on the Yarlung River Sand Microstructures, Deformation Mechanisms and Seismic Properties of Synkinematic Migmatite from Southeastern Tibet: Insights from the Migmatitic Core of the Ailao Shan-Red River Shear Zone, Western Yunnan, China Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: the Daguanchang Deposit, Northern Hebei Province, North China Craton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1