利用染料敏化太阳能电池的可见光信号进行物理水库计算

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, APPLIED Applied Physics Express Pub Date : 2024-09-04 DOI:10.35848/1882-0786/ad7456
Ryo Yamada, Motomasa Nakagawa, Shotaro Hirooka, Hirokazu Tada
{"title":"利用染料敏化太阳能电池的可见光信号进行物理水库计算","authors":"Ryo Yamada, Motomasa Nakagawa, Shotaro Hirooka, Hirokazu Tada","doi":"10.35848/1882-0786/ad7456","DOIUrl":null,"url":null,"abstract":"Physical reservoir computing (PRC) with visible-light signals was demonstrated using dye-sensitized solar cells. The short-term memory required for PRC was confirmed using light pulse inputs. Waveform learning was demonstrated for nonlinear autoregressive moving-average time series level 2 (NARMA2) signals with normalized mean square error of 0.027. The relatively slow (milliseconds to seconds) and complex charge transfer dynamics in the TiO<sub>2</sub> porous layer with redox reactions in the solution phase provided the characteristics required for PRC.","PeriodicalId":8093,"journal":{"name":"Applied Physics Express","volume":"101 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical reservoir computing with visible-light signals using dye-sensitized solar cells\",\"authors\":\"Ryo Yamada, Motomasa Nakagawa, Shotaro Hirooka, Hirokazu Tada\",\"doi\":\"10.35848/1882-0786/ad7456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical reservoir computing (PRC) with visible-light signals was demonstrated using dye-sensitized solar cells. The short-term memory required for PRC was confirmed using light pulse inputs. Waveform learning was demonstrated for nonlinear autoregressive moving-average time series level 2 (NARMA2) signals with normalized mean square error of 0.027. The relatively slow (milliseconds to seconds) and complex charge transfer dynamics in the TiO<sub>2</sub> porous layer with redox reactions in the solution phase provided the characteristics required for PRC.\",\"PeriodicalId\":8093,\"journal\":{\"name\":\"Applied Physics Express\",\"volume\":\"101 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics Express\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.35848/1882-0786/ad7456\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Express","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.35848/1882-0786/ad7456","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

利用染料敏化太阳能电池演示了可见光信号下的物理存储计算(PRC)。使用光脉冲输入确认了 PRC 所需的短期记忆。对归一化均方误差为 0.027 的非线性自回归移动平均时间序列二级 (NARMA2) 信号进行了波形学习演示。二氧化钛多孔层中相对缓慢(几毫秒到几秒钟)和复杂的电荷转移动力学以及溶液相中的氧化还原反应提供了 PRC 所需的特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical reservoir computing with visible-light signals using dye-sensitized solar cells
Physical reservoir computing (PRC) with visible-light signals was demonstrated using dye-sensitized solar cells. The short-term memory required for PRC was confirmed using light pulse inputs. Waveform learning was demonstrated for nonlinear autoregressive moving-average time series level 2 (NARMA2) signals with normalized mean square error of 0.027. The relatively slow (milliseconds to seconds) and complex charge transfer dynamics in the TiO2 porous layer with redox reactions in the solution phase provided the characteristics required for PRC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics Express
Applied Physics Express 物理-物理:应用
CiteScore
4.80
自引率
8.70%
发文量
310
审稿时长
1.2 months
期刊介绍: Applied Physics Express (APEX) is a letters journal devoted solely to rapid dissemination of up-to-date and concise reports on new findings in applied physics. The motto of APEX is high scientific quality and prompt publication. APEX is a sister journal of the Japanese Journal of Applied Physics (JJAP) and is published by IOP Publishing Ltd on behalf of the Japan Society of Applied Physics (JSAP).
期刊最新文献
Sensing and frequency selecting with toroidal resonance in metasurface A unified global model accompanied with a voltage and current sensor for low-pressure capacitively coupled RF discharge Degradation mechanism of degenerate n-GaN ohmic contact induced by ion beam etching damage Thermoelectric measurements of nanomaterials by nanodiamond quantum thermometry Physical reservoir computing with visible-light signals using dye-sensitized solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1