{"title":"降雨引发的里斯效应对黄土斜坡稳定性的影响","authors":"Zhizhou Yang, Donghui Cheng, Jun Xia","doi":"10.1007/s12583-021-1536-6","DOIUrl":null,"url":null,"abstract":"<p>This paper coupled a water-air two-phase hydrodynamic (WATPH) model with the Iverson’s method to analyze the influence of the Lisse effect on the fast groundwater pressure (<i>P</i><sub><i>w</i></sub>) response and the slope stability. Furthermore, the sensitivities of the driving force and loess soil parameters were investigated. Results showed that the WATPH model simulated the height and rise of the depth to the water table reasonably well. The depth to water table before rainfall (<i>H</i><sub>0</sub>) had a significant impact on the Lisse effect and the slope stability. When the <i>H</i><sub>0</sub> was less than approximately 1 m, the rainfall triggered a significant Lisse effect and decreased the slope factor of safety (<i>F</i><sub><i>s</i></sub>). When the rainfall intensity (<i>R</i><sub><i>i</i></sub>) was higher than the saturated hydraulic conductivity (<i>K</i><sub><i>s</i></sub>), the Lisse effect and the Fs slightly changed with the increase of the <i>R</i><sub><i>i</i></sub>, and the slope tended to be unstable with continuous rainfall. With increasing <i>K</i><sub><i>s</i></sub>, the Lisse effect noticeably increased, and the minimum <i>F</i><sub><i>s</i></sub> quickly decreases. The analysis of the normalized sensitivity coefficient revealed that <i>H</i><sub>0</sub> had a dramatic impact on the Lisse effect and loess slope stability. The different <i>R</i><sub><i>i</i></sub> and <i>K</i><sub><i>s</i></sub> values had prominent influences on the Lisse effect and slight impacts on <i>F</i><sub><i>s</i></sub>.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the Rainfall-Triggered Lisse Effect on the Stability of Loess Slopes\",\"authors\":\"Zhizhou Yang, Donghui Cheng, Jun Xia\",\"doi\":\"10.1007/s12583-021-1536-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper coupled a water-air two-phase hydrodynamic (WATPH) model with the Iverson’s method to analyze the influence of the Lisse effect on the fast groundwater pressure (<i>P</i><sub><i>w</i></sub>) response and the slope stability. Furthermore, the sensitivities of the driving force and loess soil parameters were investigated. Results showed that the WATPH model simulated the height and rise of the depth to the water table reasonably well. The depth to water table before rainfall (<i>H</i><sub>0</sub>) had a significant impact on the Lisse effect and the slope stability. When the <i>H</i><sub>0</sub> was less than approximately 1 m, the rainfall triggered a significant Lisse effect and decreased the slope factor of safety (<i>F</i><sub><i>s</i></sub>). When the rainfall intensity (<i>R</i><sub><i>i</i></sub>) was higher than the saturated hydraulic conductivity (<i>K</i><sub><i>s</i></sub>), the Lisse effect and the Fs slightly changed with the increase of the <i>R</i><sub><i>i</i></sub>, and the slope tended to be unstable with continuous rainfall. With increasing <i>K</i><sub><i>s</i></sub>, the Lisse effect noticeably increased, and the minimum <i>F</i><sub><i>s</i></sub> quickly decreases. The analysis of the normalized sensitivity coefficient revealed that <i>H</i><sub>0</sub> had a dramatic impact on the Lisse effect and loess slope stability. The different <i>R</i><sub><i>i</i></sub> and <i>K</i><sub><i>s</i></sub> values had prominent influences on the Lisse effect and slight impacts on <i>F</i><sub><i>s</i></sub>.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-021-1536-6\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-021-1536-6","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of the Rainfall-Triggered Lisse Effect on the Stability of Loess Slopes
This paper coupled a water-air two-phase hydrodynamic (WATPH) model with the Iverson’s method to analyze the influence of the Lisse effect on the fast groundwater pressure (Pw) response and the slope stability. Furthermore, the sensitivities of the driving force and loess soil parameters were investigated. Results showed that the WATPH model simulated the height and rise of the depth to the water table reasonably well. The depth to water table before rainfall (H0) had a significant impact on the Lisse effect and the slope stability. When the H0 was less than approximately 1 m, the rainfall triggered a significant Lisse effect and decreased the slope factor of safety (Fs). When the rainfall intensity (Ri) was higher than the saturated hydraulic conductivity (Ks), the Lisse effect and the Fs slightly changed with the increase of the Ri, and the slope tended to be unstable with continuous rainfall. With increasing Ks, the Lisse effect noticeably increased, and the minimum Fs quickly decreases. The analysis of the normalized sensitivity coefficient revealed that H0 had a dramatic impact on the Lisse effect and loess slope stability. The different Ri and Ks values had prominent influences on the Lisse effect and slight impacts on Fs.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.