Cong Li, Rongtang Zhang, Jiebing Zhu, Bo Lu, Xiaowei Wang, Fangling Xu, Xiaoke Shen, Jiesheng Liu, Weizhen Cai
{"title":"不同条件下风化岩边坡对降雨渗透响应的模型试验研究","authors":"Cong Li, Rongtang Zhang, Jiebing Zhu, Bo Lu, Xiaowei Wang, Fangling Xu, Xiaoke Shen, Jiesheng Liu, Weizhen Cai","doi":"10.1007/s12583-022-1704-3","DOIUrl":null,"url":null,"abstract":"<p>Weathered rock (especially granite) slopes are prone to failure under the action of rainfall, making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention. In this study, a series of model tests of weathered rock slope under different conditions were conducted. The matric suction, volumetric water content, earth pressure and deformation of slope were monitored in real time during rainfall. The response of the slope to rainfall infiltration, failure process and failure mode of slope under different conditions were analyzed, and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied. The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction. When the distribution of the matrix suction (or water content) of slope met the condition that the resistance to sliding of the slip-mass was overcome, the displacement increased sharply and landslide occurred. Three factors including rainfall process, lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall. It can be found from the test results under different conditions that compared with intermittent rainfall condition, the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall. The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite, which results in greater disaster risk. The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope. In addition, the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves, which can be used as reference for early warning of rainfall-induced weathered rock landslide.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Test Study on Response of Weathered Rock Slope to Rainfall Infiltration under Different Conditions\",\"authors\":\"Cong Li, Rongtang Zhang, Jiebing Zhu, Bo Lu, Xiaowei Wang, Fangling Xu, Xiaoke Shen, Jiesheng Liu, Weizhen Cai\",\"doi\":\"10.1007/s12583-022-1704-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Weathered rock (especially granite) slopes are prone to failure under the action of rainfall, making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention. In this study, a series of model tests of weathered rock slope under different conditions were conducted. The matric suction, volumetric water content, earth pressure and deformation of slope were monitored in real time during rainfall. The response of the slope to rainfall infiltration, failure process and failure mode of slope under different conditions were analyzed, and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied. The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction. When the distribution of the matrix suction (or water content) of slope met the condition that the resistance to sliding of the slip-mass was overcome, the displacement increased sharply and landslide occurred. Three factors including rainfall process, lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall. It can be found from the test results under different conditions that compared with intermittent rainfall condition, the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall. The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite, which results in greater disaster risk. The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope. In addition, the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves, which can be used as reference for early warning of rainfall-induced weathered rock landslide.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-022-1704-3\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-022-1704-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Model Test Study on Response of Weathered Rock Slope to Rainfall Infiltration under Different Conditions
Weathered rock (especially granite) slopes are prone to failure under the action of rainfall, making it necessary to study the response of weathered rock slope to rainfall infiltration for landslide prevention. In this study, a series of model tests of weathered rock slope under different conditions were conducted. The matric suction, volumetric water content, earth pressure and deformation of slope were monitored in real time during rainfall. The response of the slope to rainfall infiltration, failure process and failure mode of slope under different conditions were analyzed, and the early warning criterion for the failure of weathered rock slope caused by rainfall was studied. The results show that the slope deformation evolution process under rainfall condition was closely related to the dissipation of matric suction. When the distribution of the matrix suction (or water content) of slope met the condition that the resistance to sliding of the slip-mass was overcome, the displacement increased sharply and landslide occurred. Three factors including rainfall process, lithologic condition and excavation condition significantly affect the response of weathered rock slope to rainfall. It can be found from the test results under different conditions that compared with intermittent rainfall condition, the rainfall intensity and infiltration depth were smaller when the slope entering accelerated deformation stage under the condition of incremental rainfall. The accumulated rainfall when weathered clastic landslide occurring was greater than that of weathered granite, which results in greater disaster risk. The excavation angle and moisture distribution of a slope were the main factors affecting the stability of a slope. In addition, the evolution processes and critical displacement velocities of slopes were studied by combining the deformation curves and matrix suction curves, which can be used as reference for early warning of rainfall-induced weathered rock landslide.
期刊介绍:
Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences.
Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event.
The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.