复合水动力卸荷-负载响应比物理预测模型及其在水库冲积层滑坡中的应用

IF 4.1 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Earth Science Pub Date : 2024-08-14 DOI:10.1007/s12583-022-1662-9
Lu Guo, Keqiang He, Honghua Liu, Fandi Meng, Xuchun Wang
{"title":"复合水动力卸荷-负载响应比物理预测模型及其在水库冲积层滑坡中的应用","authors":"Lu Guo, Keqiang He, Honghua Liu, Fandi Meng, Xuchun Wang","doi":"10.1007/s12583-022-1662-9","DOIUrl":null,"url":null,"abstract":"<p>It is well known that the deformation and damage of reservoir colluvium landslides are often determined by the combined dynamics of reservoir water level change and rainfall. Based on the systematic analysis of the change law of reservoir water level, rainfall and displacements of reservoir colluvium landslide, this paper proposes the compound hydrodynamic action of rainfall and reservoir water as the unload-load parameter, and the landslide displacement as the unload-load response parameter. Based on this, a physical prediction model of the compound hydrodynamic unload-load response ratio of reservoir colluvium landslide was established, and the quantitative relationship between the compound hydrodynamic unload-load response ratio and its stability evolution was in-depth analyzed and determined. On the basis of the above research, taking Shuping landslide, a typical hydrodynamic pressure landslide as an example, the unload-load response ratio model is used to systematically evaluate and predict the stability evolution law and the change trend of the landslide under compound hydrodynamic action. The prediction result shows that the variation law of the compound hydrodynamic unload-load response ratio is consistent with the dynamic evolution law of its stability. Therefore, the above studies show that the compound hydrodynamic unload-load response ratio parameter is an effective displacement dynamic evaluation parameter for reservoir colluvium landslides, so it can be used in the prediction of the reservoir colluvium landslides.</p>","PeriodicalId":15607,"journal":{"name":"Journal of Earth Science","volume":"134 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physical Prediction Model of Compound Hydrodynamic Unload-Load Response Ratio and Its Application in Reservoir Colluvium Landslide\",\"authors\":\"Lu Guo, Keqiang He, Honghua Liu, Fandi Meng, Xuchun Wang\",\"doi\":\"10.1007/s12583-022-1662-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>It is well known that the deformation and damage of reservoir colluvium landslides are often determined by the combined dynamics of reservoir water level change and rainfall. Based on the systematic analysis of the change law of reservoir water level, rainfall and displacements of reservoir colluvium landslide, this paper proposes the compound hydrodynamic action of rainfall and reservoir water as the unload-load parameter, and the landslide displacement as the unload-load response parameter. Based on this, a physical prediction model of the compound hydrodynamic unload-load response ratio of reservoir colluvium landslide was established, and the quantitative relationship between the compound hydrodynamic unload-load response ratio and its stability evolution was in-depth analyzed and determined. On the basis of the above research, taking Shuping landslide, a typical hydrodynamic pressure landslide as an example, the unload-load response ratio model is used to systematically evaluate and predict the stability evolution law and the change trend of the landslide under compound hydrodynamic action. The prediction result shows that the variation law of the compound hydrodynamic unload-load response ratio is consistent with the dynamic evolution law of its stability. Therefore, the above studies show that the compound hydrodynamic unload-load response ratio parameter is an effective displacement dynamic evaluation parameter for reservoir colluvium landslides, so it can be used in the prediction of the reservoir colluvium landslides.</p>\",\"PeriodicalId\":15607,\"journal\":{\"name\":\"Journal of Earth Science\",\"volume\":\"134 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Earth Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12583-022-1662-9\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12583-022-1662-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,水库冲积层滑坡的变形和破坏往往是由水库水位变化和降雨的复合动力作用决定的。本文在系统分析水库水位、降雨和水库冲积层滑坡位移变化规律的基础上,提出以降雨和水库水的复合水动力作用为卸荷-加载参数,以滑坡位移为卸荷-加载响应参数。在此基础上,建立了水库冲积滑坡复合水动力卸荷响应比的物理预测模型,并深入分析和确定了复合水动力卸荷响应比与其稳定性演变之间的定量关系。在上述研究的基础上,以典型的水动力压力滑坡--曙坪滑坡为例,利用卸荷-荷载响应比模型系统地评价和预测了复合水动力作用下滑坡的稳定性演变规律和变化趋势。预测结果表明,复合水动力卸荷-荷载响应比的变化规律与其稳定性的动态演化规律是一致的。因此,上述研究表明,复合水动力卸荷-荷载响应比参数是一种有效的水库冲积层滑坡位移动力评价参数,可用于水库冲积层滑坡的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physical Prediction Model of Compound Hydrodynamic Unload-Load Response Ratio and Its Application in Reservoir Colluvium Landslide

It is well known that the deformation and damage of reservoir colluvium landslides are often determined by the combined dynamics of reservoir water level change and rainfall. Based on the systematic analysis of the change law of reservoir water level, rainfall and displacements of reservoir colluvium landslide, this paper proposes the compound hydrodynamic action of rainfall and reservoir water as the unload-load parameter, and the landslide displacement as the unload-load response parameter. Based on this, a physical prediction model of the compound hydrodynamic unload-load response ratio of reservoir colluvium landslide was established, and the quantitative relationship between the compound hydrodynamic unload-load response ratio and its stability evolution was in-depth analyzed and determined. On the basis of the above research, taking Shuping landslide, a typical hydrodynamic pressure landslide as an example, the unload-load response ratio model is used to systematically evaluate and predict the stability evolution law and the change trend of the landslide under compound hydrodynamic action. The prediction result shows that the variation law of the compound hydrodynamic unload-load response ratio is consistent with the dynamic evolution law of its stability. Therefore, the above studies show that the compound hydrodynamic unload-load response ratio parameter is an effective displacement dynamic evaluation parameter for reservoir colluvium landslides, so it can be used in the prediction of the reservoir colluvium landslides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Earth Science
Journal of Earth Science 地学-地球科学综合
CiteScore
5.50
自引率
12.10%
发文量
128
审稿时长
4.5 months
期刊介绍: Journal of Earth Science (previously known as Journal of China University of Geosciences), issued bimonthly through China University of Geosciences, covers all branches of geology and related technology in the exploration and utilization of earth resources. Founded in 1990 as the Journal of China University of Geosciences, this publication is expanding its breadth of coverage to an international scope. Coverage includes such topics as geology, petrology, mineralogy, ore deposit geology, tectonics, paleontology, stratigraphy, sedimentology, geochemistry, geophysics and environmental sciences. Articles published in recent issues include Tectonics in the Northwestern West Philippine Basin; Creep Damage Characteristics of Soft Rock under Disturbance Loads; Simplicial Indicator Kriging; Tephra Discovered in High Resolution Peat Sediment and Its Indication to Climatic Event. The journal offers discussion of new theories, methods and discoveries; reports on recent achievements in the geosciences; and timely reviews of selected subjects.
期刊最新文献
Quaternary Activity Characteristics and Regional Tectonic Significance of the Jiulong Fault in Jiujiang, Jiangxi Province, China Application of Detrital Apatite U-Pb Geochronology and Trace Elements for Provenance Analysis, Insights from a Study on the Yarlung River Sand Microstructures, Deformation Mechanisms and Seismic Properties of Synkinematic Migmatite from Southeastern Tibet: Insights from the Migmatitic Core of the Ailao Shan-Red River Shear Zone, Western Yunnan, China Paleozoic Multi-Stage Magmatic Events Related to Proto-Tethys and Paleo-Tethys Evolution: Insights from Intrusive Rocks in the Eastern Altyn Orogen, NW China Tracing Sources of Geochemical Anomalies in a Deeply Buried Volcanic-Related Hydrothermal Uranium Deposit: the Daguanchang Deposit, Northern Hebei Province, North China Craton
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1