Ping Zhang, Yang-Yang Lyu, Jingjing Lv, Zihan Wei, Shixian Chen, Chenguang Wang, Hongmei Du, Dingding Li, Zixi Wang, Shoucheng Hou, Runfeng Su, Hancong Sun, Yuan Du, Li Du, Liming Gao, Yong-Lei Wang, Huabing Wang, Peiheng Wu
{"title":"超宽带近场约瑟夫森微波显微镜","authors":"Ping Zhang, Yang-Yang Lyu, Jingjing Lv, Zihan Wei, Shixian Chen, Chenguang Wang, Hongmei Du, Dingding Li, Zixi Wang, Shoucheng Hou, Runfeng Su, Hancong Sun, Yuan Du, Li Du, Liming Gao, Yong-Lei Wang, Huabing Wang, Peiheng Wu","doi":"10.1093/nsr/nwae308","DOIUrl":null,"url":null,"abstract":"Advanced microwave technologies constitute the foundation of a wide range of modern sciences, including microwave integrated circuits, quantum computing, microwave photonics, spintronics, etc. To facilitate the design of chip-based microwave devices, there is an increasing demand for state-of-the-art microscopic techniques capable of characterizing the near-field microwave distribution and performance. In this work, we integrate Josephson junctions onto a nano-sized quartz tip, forming a highly sensitive microwave mixer on-tip. This allows us to conduct spectroscopic imaging of near-field microwave distributions with high spatial resolution. Leveraging its microwave-sensitive characteristics, our Josephson microscopy achieves a broad detecting bandwidth of up to 200 GHz, as well as remarkable frequency and intensity resolutions. Near-field characterizations of microwave circuits are also conducted to demonstrate the capabilities of Josephson microscopy. Our work emphasizes the benefits of utilizing Josephson microscopy as a real-time, non-destructive technique to advance integrated microwave devices.","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"45 1","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-broadband near-field Josephson microwave microscopy\",\"authors\":\"Ping Zhang, Yang-Yang Lyu, Jingjing Lv, Zihan Wei, Shixian Chen, Chenguang Wang, Hongmei Du, Dingding Li, Zixi Wang, Shoucheng Hou, Runfeng Su, Hancong Sun, Yuan Du, Li Du, Liming Gao, Yong-Lei Wang, Huabing Wang, Peiheng Wu\",\"doi\":\"10.1093/nsr/nwae308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Advanced microwave technologies constitute the foundation of a wide range of modern sciences, including microwave integrated circuits, quantum computing, microwave photonics, spintronics, etc. To facilitate the design of chip-based microwave devices, there is an increasing demand for state-of-the-art microscopic techniques capable of characterizing the near-field microwave distribution and performance. In this work, we integrate Josephson junctions onto a nano-sized quartz tip, forming a highly sensitive microwave mixer on-tip. This allows us to conduct spectroscopic imaging of near-field microwave distributions with high spatial resolution. Leveraging its microwave-sensitive characteristics, our Josephson microscopy achieves a broad detecting bandwidth of up to 200 GHz, as well as remarkable frequency and intensity resolutions. Near-field characterizations of microwave circuits are also conducted to demonstrate the capabilities of Josephson microscopy. Our work emphasizes the benefits of utilizing Josephson microscopy as a real-time, non-destructive technique to advance integrated microwave devices.\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae308\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae308","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Advanced microwave technologies constitute the foundation of a wide range of modern sciences, including microwave integrated circuits, quantum computing, microwave photonics, spintronics, etc. To facilitate the design of chip-based microwave devices, there is an increasing demand for state-of-the-art microscopic techniques capable of characterizing the near-field microwave distribution and performance. In this work, we integrate Josephson junctions onto a nano-sized quartz tip, forming a highly sensitive microwave mixer on-tip. This allows us to conduct spectroscopic imaging of near-field microwave distributions with high spatial resolution. Leveraging its microwave-sensitive characteristics, our Josephson microscopy achieves a broad detecting bandwidth of up to 200 GHz, as well as remarkable frequency and intensity resolutions. Near-field characterizations of microwave circuits are also conducted to demonstrate the capabilities of Josephson microscopy. Our work emphasizes the benefits of utilizing Josephson microscopy as a real-time, non-destructive technique to advance integrated microwave devices.
期刊介绍:
National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178.
National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.