{"title":"通过高通量计算筛选二维材料中的轨道磁化","authors":"Martin Ovesen, Thomas Olsen","doi":"10.1088/2053-1583/ad6ba3","DOIUrl":null,"url":null,"abstract":"We calculate the orbital magnetization of 822 two-dimensional magnetic materials from the Computational 2D Materials Database (C2DB). For compounds containing 5<italic toggle=\"yes\">d</italic> elements we find orbital moments of the order of 0.3–0.5 <inline-formula>\n<tex-math><?CDATA $\\mu_{\\mathrm{B}}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\"normal\">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"tdmad6ba3ieqn1.gif\"></inline-graphic></inline-formula>, which points to the necessity of including these in any type of magnetic modeling and comparison with experiments. It is also shown that the alignment of orbital moments with respect to the spin largely follows the predictions from Hund’s rule and that deviations may be explained by the <italic toggle=\"yes\">d</italic>-band splitting originating from the crystal field—for example in the important case of CrI<sub>3</sub>. Finally, we show that for certain insulators, Hubbard corrections may lead to large and fully unquenched orbital moments that are pinned to the lattice rather than the spin and that these moments can lead to enormous magnetic anisotropies. Such unquenched ground states are only found from density functional theory calculations that include both Hubbard corrections and self-consistent spin–orbit coupling and largely invalidates the use of the magnetic force theorem for calculating magnetic anisotropies.","PeriodicalId":6812,"journal":{"name":"2D Materials","volume":"45 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Orbital magnetization in two-dimensional materials from high-throughput computational screening\",\"authors\":\"Martin Ovesen, Thomas Olsen\",\"doi\":\"10.1088/2053-1583/ad6ba3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We calculate the orbital magnetization of 822 two-dimensional magnetic materials from the Computational 2D Materials Database (C2DB). For compounds containing 5<italic toggle=\\\"yes\\\">d</italic> elements we find orbital moments of the order of 0.3–0.5 <inline-formula>\\n<tex-math><?CDATA $\\\\mu_{\\\\mathrm{B}}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>μ</mml:mi><mml:mrow><mml:mrow><mml:mi mathvariant=\\\"normal\\\">B</mml:mi></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"tdmad6ba3ieqn1.gif\\\"></inline-graphic></inline-formula>, which points to the necessity of including these in any type of magnetic modeling and comparison with experiments. It is also shown that the alignment of orbital moments with respect to the spin largely follows the predictions from Hund’s rule and that deviations may be explained by the <italic toggle=\\\"yes\\\">d</italic>-band splitting originating from the crystal field—for example in the important case of CrI<sub>3</sub>. Finally, we show that for certain insulators, Hubbard corrections may lead to large and fully unquenched orbital moments that are pinned to the lattice rather than the spin and that these moments can lead to enormous magnetic anisotropies. Such unquenched ground states are only found from density functional theory calculations that include both Hubbard corrections and self-consistent spin–orbit coupling and largely invalidates the use of the magnetic force theorem for calculating magnetic anisotropies.\",\"PeriodicalId\":6812,\"journal\":{\"name\":\"2D Materials\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2D Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1088/2053-1583/ad6ba3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2D Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2053-1583/ad6ba3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Orbital magnetization in two-dimensional materials from high-throughput computational screening
We calculate the orbital magnetization of 822 two-dimensional magnetic materials from the Computational 2D Materials Database (C2DB). For compounds containing 5d elements we find orbital moments of the order of 0.3–0.5 μB, which points to the necessity of including these in any type of magnetic modeling and comparison with experiments. It is also shown that the alignment of orbital moments with respect to the spin largely follows the predictions from Hund’s rule and that deviations may be explained by the d-band splitting originating from the crystal field—for example in the important case of CrI3. Finally, we show that for certain insulators, Hubbard corrections may lead to large and fully unquenched orbital moments that are pinned to the lattice rather than the spin and that these moments can lead to enormous magnetic anisotropies. Such unquenched ground states are only found from density functional theory calculations that include both Hubbard corrections and self-consistent spin–orbit coupling and largely invalidates the use of the magnetic force theorem for calculating magnetic anisotropies.
期刊介绍:
2D Materials is a multidisciplinary, electronic-only journal devoted to publishing fundamental and applied research of the highest quality and impact covering all aspects of graphene and related two-dimensional materials.