Grace L. Rose , Alex N. Boytar , Isabel N. King , Morgan J. Farley , Michelle Maugham-Macan , Tina L. Skinner , Kate A. Bolam , Mia A. Schaumberg
{"title":"pQCT 测量各年龄段骨骼和肌肉组织质量的技术和生物学可靠性","authors":"Grace L. Rose , Alex N. Boytar , Isabel N. King , Morgan J. Farley , Michelle Maugham-Macan , Tina L. Skinner , Kate A. Bolam , Mia A. Schaumberg","doi":"10.1016/j.jocd.2024.101522","DOIUrl":null,"url":null,"abstract":"<div><p><em>Introduction:</em> Reliable peripheral quantitative computed tomography (pQCT) assessment is essential to the accurate longitudinal reporting of bone and muscle quality. However, the between-day reliability of pQCT and the influence of age on outcome reliability is currently unknown.</p><p><em>Objective:</em> To quantify the same- and between-day reliability of morphological pQCT at proximal and distal segments of the forearm, shank, and thigh, and explore the influence of participant body size, age, and sex on outcome reliability.</p><p><em>Methods:</em> Men and women (49 % female, 18-85 years, n=72-86) completed two consecutive-day pQCT testing sessions, where repeat measurements were conducted on day-one for technical error, and between-day for biological error quantification. Testing was undertaken following best practice body composition testing guidance, including standardized presentation and consistent time-of-day.</p><p><em>Results:</em> All measurements of bone were classified as having ‘good’ to ‘excellent’ reliability [intraclass correlation coefficient (r=0.786- 0.999], as were measurements of muscle area (ICC r=0.991-0.999) and total fat (r=0.996-0.999). However, between- and same-day muscle density measurements at the thigh and forearm were classified as ‘poor’ (r=0.476) and ‘moderate’ (r=0.622), respectively. Likewise, intramuscular fat area at the thigh was classified as ‘moderate’ (r=0.737) for between-day measurement. Biological error was inflated compared to technical error by an average of 0.4 % for most measurements. Error values tended to increase proportionally with the amount of tissue quantified and males had significantly greater biological error for measurement of distal tibial bone (<em>p</em><0.002) and trabecular area (<em>p</em><0.002). Biological error was inflated among older adults for measurement of forearm muscle density (<em>p</em><0.002).</p><p><em>Conclusions:</em> Most pQCT outcomes can be implemented with confidence, especially outcomes that assess bone area and density at any of the radial, tibial, and femoral sites investigated herein. However, it is important to account for the influence of biological measurement error in further studies, especially for muscle and intramuscular fat outcomes derived by pQCT.</p></div>","PeriodicalId":50240,"journal":{"name":"Journal of Clinical Densitometry","volume":"27 4","pages":"Article 101522"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Technical and biological reliability of pQCT measured bone and muscle tissue quality across the age-span\",\"authors\":\"Grace L. Rose , Alex N. Boytar , Isabel N. King , Morgan J. Farley , Michelle Maugham-Macan , Tina L. Skinner , Kate A. Bolam , Mia A. Schaumberg\",\"doi\":\"10.1016/j.jocd.2024.101522\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Introduction:</em> Reliable peripheral quantitative computed tomography (pQCT) assessment is essential to the accurate longitudinal reporting of bone and muscle quality. However, the between-day reliability of pQCT and the influence of age on outcome reliability is currently unknown.</p><p><em>Objective:</em> To quantify the same- and between-day reliability of morphological pQCT at proximal and distal segments of the forearm, shank, and thigh, and explore the influence of participant body size, age, and sex on outcome reliability.</p><p><em>Methods:</em> Men and women (49 % female, 18-85 years, n=72-86) completed two consecutive-day pQCT testing sessions, where repeat measurements were conducted on day-one for technical error, and between-day for biological error quantification. Testing was undertaken following best practice body composition testing guidance, including standardized presentation and consistent time-of-day.</p><p><em>Results:</em> All measurements of bone were classified as having ‘good’ to ‘excellent’ reliability [intraclass correlation coefficient (r=0.786- 0.999], as were measurements of muscle area (ICC r=0.991-0.999) and total fat (r=0.996-0.999). However, between- and same-day muscle density measurements at the thigh and forearm were classified as ‘poor’ (r=0.476) and ‘moderate’ (r=0.622), respectively. Likewise, intramuscular fat area at the thigh was classified as ‘moderate’ (r=0.737) for between-day measurement. Biological error was inflated compared to technical error by an average of 0.4 % for most measurements. Error values tended to increase proportionally with the amount of tissue quantified and males had significantly greater biological error for measurement of distal tibial bone (<em>p</em><0.002) and trabecular area (<em>p</em><0.002). Biological error was inflated among older adults for measurement of forearm muscle density (<em>p</em><0.002).</p><p><em>Conclusions:</em> Most pQCT outcomes can be implemented with confidence, especially outcomes that assess bone area and density at any of the radial, tibial, and femoral sites investigated herein. However, it is important to account for the influence of biological measurement error in further studies, especially for muscle and intramuscular fat outcomes derived by pQCT.</p></div>\",\"PeriodicalId\":50240,\"journal\":{\"name\":\"Journal of Clinical Densitometry\",\"volume\":\"27 4\",\"pages\":\"Article 101522\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Densitometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S109469502400057X\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Densitometry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109469502400057X","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Technical and biological reliability of pQCT measured bone and muscle tissue quality across the age-span
Introduction: Reliable peripheral quantitative computed tomography (pQCT) assessment is essential to the accurate longitudinal reporting of bone and muscle quality. However, the between-day reliability of pQCT and the influence of age on outcome reliability is currently unknown.
Objective: To quantify the same- and between-day reliability of morphological pQCT at proximal and distal segments of the forearm, shank, and thigh, and explore the influence of participant body size, age, and sex on outcome reliability.
Methods: Men and women (49 % female, 18-85 years, n=72-86) completed two consecutive-day pQCT testing sessions, where repeat measurements were conducted on day-one for technical error, and between-day for biological error quantification. Testing was undertaken following best practice body composition testing guidance, including standardized presentation and consistent time-of-day.
Results: All measurements of bone were classified as having ‘good’ to ‘excellent’ reliability [intraclass correlation coefficient (r=0.786- 0.999], as were measurements of muscle area (ICC r=0.991-0.999) and total fat (r=0.996-0.999). However, between- and same-day muscle density measurements at the thigh and forearm were classified as ‘poor’ (r=0.476) and ‘moderate’ (r=0.622), respectively. Likewise, intramuscular fat area at the thigh was classified as ‘moderate’ (r=0.737) for between-day measurement. Biological error was inflated compared to technical error by an average of 0.4 % for most measurements. Error values tended to increase proportionally with the amount of tissue quantified and males had significantly greater biological error for measurement of distal tibial bone (p<0.002) and trabecular area (p<0.002). Biological error was inflated among older adults for measurement of forearm muscle density (p<0.002).
Conclusions: Most pQCT outcomes can be implemented with confidence, especially outcomes that assess bone area and density at any of the radial, tibial, and femoral sites investigated herein. However, it is important to account for the influence of biological measurement error in further studies, especially for muscle and intramuscular fat outcomes derived by pQCT.
期刊介绍:
The Journal is committed to serving ISCD''s mission - the education of heterogenous physician specialties and technologists who are involved in the clinical assessment of skeletal health. The focus of JCD is bone mass measurement, including epidemiology of bone mass, how drugs and diseases alter bone mass, new techniques and quality assurance in bone mass imaging technologies, and bone mass health/economics.
Combining high quality research and review articles with sound, practice-oriented advice, JCD meets the diverse diagnostic and management needs of radiologists, endocrinologists, nephrologists, rheumatologists, gynecologists, family physicians, internists, and technologists whose patients require diagnostic clinical densitometry for therapeutic management.