洞察肿瘤发生过程中的 LKB1 靶向作用

IF 6.9 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Genes & Diseases Pub Date : 2024-08-28 DOI:10.1016/j.gendis.2024.101402
Charles B. Trelford, Trevor G. Shepherd
{"title":"洞察肿瘤发生过程中的 LKB1 靶向作用","authors":"Charles B. Trelford, Trevor G. Shepherd","doi":"10.1016/j.gendis.2024.101402","DOIUrl":null,"url":null,"abstract":"Genetic alterations to serine-threonine kinase 11 () have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by ) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"77 1","pages":""},"PeriodicalIF":6.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Insights into targeting LKB1 in tumorigenesis\",\"authors\":\"Charles B. Trelford, Trevor G. Shepherd\",\"doi\":\"10.1016/j.gendis.2024.101402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic alterations to serine-threonine kinase 11 () have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by ) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.\",\"PeriodicalId\":12689,\"journal\":{\"name\":\"Genes & Diseases\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes & Diseases\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.gendis.2024.101402\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.gendis.2024.101402","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

丝氨酸-苏氨酸激酶 11()的基因改变与 Peutz-Jeghers 综合征和肿瘤发生有关。对肝脏激酶 B1(LKB1,由 )的特异性作用的进一步研究发现,它能调节 AMP 激活蛋白激酶(AMPK)和 AMPK 相关激酶。鉴于 LKB1 活性丧失后,迁移和增殖都会增强,再加上癌症活检中基因改变的普遍性,LKB1 被标记为肿瘤抑制因子。然而,LKB1 在肿瘤发生过程中的作用是自相矛盾的,因为 LKB1 在激活自噬和清除活性氧的同时,也抑制了有助于癌细胞存活的厌氧作用。由于 LKB1 的致癌特性,靶向 LKB1 通路已成为癌症治疗的重要手段。最近,靶向 LKB1 信号转导的研究和临床研究取得了成功,而且化学物质在 LKB1 缺失的肿瘤中具有更强的细胞毒性,因此现在需要 LKB1 抑制剂。然而,验证 LKB1 抑制剂具有挑战性,因为 LKB1 适配蛋白、核胞浆穿梭和剪接变体都会操纵 LKB1 的活性。此外,STE-20 相关激酶适配蛋白(STRAD)和小鼠蛋白 25 决定着 LKB1 的细胞定位和激酶活性。因此,在评估候选药物的疗效和效力之前,需要明确 LKB1 的功能状态。因此,为了加深人们对 LKB1 在生理学和肿瘤学中的作用的了解,本综述将重点介绍 LKB1 在肿瘤发生中的作用,并探讨 LKB1 抑制剂的治疗意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Insights into targeting LKB1 in tumorigenesis
Genetic alterations to serine-threonine kinase 11 () have been implicated in Peutz-Jeghers syndrome and tumorigenesis. Further exploration of the context-specific roles of liver kinase B1 (LKB1; encoded by ) observed that it regulates AMP-activated protein kinase (AMPK) and AMPK-related kinases. Given that both migration and proliferation are enhanced with the loss of LKB1 activity combined with the prevalence of genetic alterations in cancer biopsies, LKB1 was marked as a tumor suppressor. However, the role of LKB1 in tumorigenesis is paradoxical as LKB1 activates autophagy and reactive oxygen species scavenging while dampening anoikis, which contribute to cancer cell survival. Due to the pro-tumorigenic properties of LKB1, targeting LKB1 pathways is now relevant for cancer treatment. With the recent successes of targeting LKB1 signaling in research and clinical settings, and enhanced cytotoxicity of chemical compounds in LKB1-deficient tumors, there is now a need for LKB1 inhibitors. However, validating LKB1 inhibitors is challenging as LKB1 adaptor proteins, nucleocytoplasmic shuttling, and splice variants all manipulate LKB1 activity. Furthermore, STE-20-related kinase adaptor protein (STRAD) and mouse protein 25 dictate LKB1 cellular localization and kinase activity. For these reasons, prior to assessing the efficacy and potency of pharmacological candidates, the functional status of LKB1 needs to be defined. Therefore, to improve the understanding of LKB1 in physiology and oncology, this review highlights the role of LKB1 in tumorigenesis and addresses the therapeutic relevancy of LKB1 inhibitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Genes & Diseases
Genes & Diseases Multiple-
CiteScore
7.30
自引率
0.00%
发文量
347
审稿时长
49 days
期刊介绍: Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch. Aims and Scopes Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.
期刊最新文献
Targeting MYC: Multidimensional regulation and therapeutic strategies in oncology Heavy mechanical force decelerates orthodontic tooth movement via Piezo1-induced mitochondrial calcium down-regulation MAFB-mediated CEBPA regulated human urothelium growth through Wnt/β-catenin signaling pathway HMGN2 accelerates the proliferation and cell cycle progression of glioblastoma by regulating CDC20 expression Systematic pan-cancer analysis identifies DNASE2 as a potential prognostic marker and immunotherapeutic target for glioblastoma multiforme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1