集成在铌酸锂薄膜平台上的宽调谐 Ka 波段光电振荡器

IF 5.4 1区 物理与天体物理 Q1 OPTICS APL Photonics Pub Date : 2024-09-06 DOI:10.1063/5.0214107
Rui Ma, Zijun Huang, Wei Ke, Xichen Wang, Peng Hao, X. Steve Yao, Xinlun Cai
{"title":"集成在铌酸锂薄膜平台上的宽调谐 Ka 波段光电振荡器","authors":"Rui Ma, Zijun Huang, Wei Ke, Xichen Wang, Peng Hao, X. Steve Yao, Xinlun Cai","doi":"10.1063/5.0214107","DOIUrl":null,"url":null,"abstract":"We report a novel widely tunable Ka-band optoelectronic oscillator (OEO) realized by integrating a Mach–Zehnder modulator (MZM), a thermally-tunable add-drop micro-ring resonator (MRR), and a Mach–Zehnder interferometer (MZI) on the thin film lithium niobate platform, with the MZM and the MRR sequentially situated in one of the MZI arms. The MZM is for modulating the optical carrier, while the add-drop MRR is for selecting a single modulation sideband to beat with the unmodulated optical carrier from the other arm of the MZI, such that the OEO oscillation frequency is determined by the frequency spacing between the optical carrier and the selected modulation sideband, while the frequency tuning range is determined by the free spectral range of the MRR. By tuning the resonances of the add-drop MRR, the oscillation frequency can be tuned from 20 to 35 GHz, with the phase noises of −85 dBc/Hz @10 kHz and −116 dBc/Hz @100 kHz in the whole tuning range, which represent much higher oscillation frequency, much wider frequency tuning range, and lower phase noise than those of the photonic integrated OEOs realized with other material platforms reported previously.","PeriodicalId":8198,"journal":{"name":"APL Photonics","volume":"10 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Widely tunable Ka-band optoelectronic oscillator integrated on thin film lithium niobate platform\",\"authors\":\"Rui Ma, Zijun Huang, Wei Ke, Xichen Wang, Peng Hao, X. Steve Yao, Xinlun Cai\",\"doi\":\"10.1063/5.0214107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report a novel widely tunable Ka-band optoelectronic oscillator (OEO) realized by integrating a Mach–Zehnder modulator (MZM), a thermally-tunable add-drop micro-ring resonator (MRR), and a Mach–Zehnder interferometer (MZI) on the thin film lithium niobate platform, with the MZM and the MRR sequentially situated in one of the MZI arms. The MZM is for modulating the optical carrier, while the add-drop MRR is for selecting a single modulation sideband to beat with the unmodulated optical carrier from the other arm of the MZI, such that the OEO oscillation frequency is determined by the frequency spacing between the optical carrier and the selected modulation sideband, while the frequency tuning range is determined by the free spectral range of the MRR. By tuning the resonances of the add-drop MRR, the oscillation frequency can be tuned from 20 to 35 GHz, with the phase noises of −85 dBc/Hz @10 kHz and −116 dBc/Hz @100 kHz in the whole tuning range, which represent much higher oscillation frequency, much wider frequency tuning range, and lower phase noise than those of the photonic integrated OEOs realized with other material platforms reported previously.\",\"PeriodicalId\":8198,\"journal\":{\"name\":\"APL Photonics\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"APL Photonics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0214107\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0214107","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了一种新型的宽调谐 Ka 波段光电振荡器(OEO),它是通过在铌酸锂薄膜平台上集成一个马赫-泽恩德调制器(MZM)、一个热调谐增滴微环谐振器(MRR)和一个马赫-泽恩德干涉仪(MZI)而实现的,其中马赫-泽恩德调制器和增滴微环谐振器依次位于 MZI 的一个臂上。MZM 用于对光载波进行调制,而加降 MRR 则用于从 MZI 的另一个臂中选择一个调制边带,与未调制的光载波一起跳动,这样 OEO 的振荡频率就由光载波与所选调制边带之间的频率间隔决定,而频率调谐范围则由 MRR 的自由光谱范围决定。通过调节滴加 MRR 的谐振,振荡频率可在 20 至 35 GHz 之间调节,整个调节范围内的相位噪声分别为 -85 dBc/Hz @ 10 kHz 和 -116 dBc/Hz @ 100 kHz,与之前报道的使用其他材料平台实现的光子集成 OEO 相比,振荡频率更高,频率调节范围更广,相位噪声更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Widely tunable Ka-band optoelectronic oscillator integrated on thin film lithium niobate platform
We report a novel widely tunable Ka-band optoelectronic oscillator (OEO) realized by integrating a Mach–Zehnder modulator (MZM), a thermally-tunable add-drop micro-ring resonator (MRR), and a Mach–Zehnder interferometer (MZI) on the thin film lithium niobate platform, with the MZM and the MRR sequentially situated in one of the MZI arms. The MZM is for modulating the optical carrier, while the add-drop MRR is for selecting a single modulation sideband to beat with the unmodulated optical carrier from the other arm of the MZI, such that the OEO oscillation frequency is determined by the frequency spacing between the optical carrier and the selected modulation sideband, while the frequency tuning range is determined by the free spectral range of the MRR. By tuning the resonances of the add-drop MRR, the oscillation frequency can be tuned from 20 to 35 GHz, with the phase noises of −85 dBc/Hz @10 kHz and −116 dBc/Hz @100 kHz in the whole tuning range, which represent much higher oscillation frequency, much wider frequency tuning range, and lower phase noise than those of the photonic integrated OEOs realized with other material platforms reported previously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
APL Photonics
APL Photonics Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
10.30
自引率
3.60%
发文量
107
审稿时长
19 weeks
期刊介绍: APL Photonics is the new dedicated home for open access multidisciplinary research from and for the photonics community. The journal publishes fundamental and applied results that significantly advance the knowledge in photonics across physics, chemistry, biology and materials science.
期刊最新文献
Impact of polarization pulling on optimal spectrometer design for stimulated Brillouin scattering microscopy. Advancements in optical biosensing techniques: From fundamentals to future prospects The manipulation of spin angular momentum for binary circular Airy beam during propagation A tutorial on optical photothermal infrared (O-PTIR) microscopy Beyond memory-effect matrix-based imaging in scattering media by acousto-optic gating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1