使用铝电极和铁电极的间歇式电凝系统处理受污染的河水:工艺性能和统计分析

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-09-12 DOI:10.1007/s11270-024-07495-6
Nouara Boudjema, Dhirar Ben Salem, Elleuch Lobna, Ouakouak Abdelkader, Nabil Mameri
{"title":"使用铝电极和铁电极的间歇式电凝系统处理受污染的河水:工艺性能和统计分析","authors":"Nouara Boudjema,&nbsp;Dhirar Ben Salem,&nbsp;Elleuch Lobna,&nbsp;Ouakouak Abdelkader,&nbsp;Nabil Mameri","doi":"10.1007/s11270-024-07495-6","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the reduction efficiency of chemical pollution of freshwater by electrocoagulation (EC) process using aluminium (Al) and iron (Fe) electrodes. Several parameters affecting the EC efficiency were investigated in batch manner. Results indicate that both Al and Fe electrodes can eliminate satisfactorily the chemical pollutants of water. The Fe/Fe pair electrode showed an excellent efficiency in reducing turbidity (≈ 99%) within 30 min of time and at 3.0 A intensity. The COD value increased from 62 to 65% with current intensity from 0.3 to 1.0, and from 70 to 98% following the increase in intensity from 2.0 to 3.0A by using the Al electrode. The removal of COD reached 86% with Fe electrode (for 10 min) while it was 99% with Al electrode (after 45 min) using Al electrode (at 2.5 intensity). It was also found that the <i>P</i> value is greater than 0.05 for COD and less than 0.05 for TSS with both electrodes (Al, Fe). The finding also confirmed that the significant difference exists in the case of TSS reduction and it does not exist in the case of COD. Overall, the study underscores the performance of electrocoagulation using both Al and Fe electrodes for removing chemical pollutants in freshwater, highlighting its potential as a sustainable and adaptable solution for their application in water treatment units.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Treatment of contaminated river water by batch electrocoagulation system using aluminium and iron electrodes: Performance of process and statistical analysis\",\"authors\":\"Nouara Boudjema,&nbsp;Dhirar Ben Salem,&nbsp;Elleuch Lobna,&nbsp;Ouakouak Abdelkader,&nbsp;Nabil Mameri\",\"doi\":\"10.1007/s11270-024-07495-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study examines the reduction efficiency of chemical pollution of freshwater by electrocoagulation (EC) process using aluminium (Al) and iron (Fe) electrodes. Several parameters affecting the EC efficiency were investigated in batch manner. Results indicate that both Al and Fe electrodes can eliminate satisfactorily the chemical pollutants of water. The Fe/Fe pair electrode showed an excellent efficiency in reducing turbidity (≈ 99%) within 30 min of time and at 3.0 A intensity. The COD value increased from 62 to 65% with current intensity from 0.3 to 1.0, and from 70 to 98% following the increase in intensity from 2.0 to 3.0A by using the Al electrode. The removal of COD reached 86% with Fe electrode (for 10 min) while it was 99% with Al electrode (after 45 min) using Al electrode (at 2.5 intensity). It was also found that the <i>P</i> value is greater than 0.05 for COD and less than 0.05 for TSS with both electrodes (Al, Fe). The finding also confirmed that the significant difference exists in the case of TSS reduction and it does not exist in the case of COD. Overall, the study underscores the performance of electrocoagulation using both Al and Fe electrodes for removing chemical pollutants in freshwater, highlighting its potential as a sustainable and adaptable solution for their application in water treatment units.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07495-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07495-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了使用铝(Al)和铁(Fe)电极的电凝(EC)工艺减少淡水化学污染的效率。研究采用批处理方式,对影响电凝效率的几个参数进行了调查。结果表明,铝电极和铁电极都能令人满意地消除水中的化学污染物。在 3.0 A 的强度下,铁/铝对电极在 30 分钟内降低浊度的效率极高(≈ 99%)。电流强度从 0.3 到 1.0 时,COD 值从 62% 增加到 65%;使用铝电极,电流强度从 2.0A 增加到 3.0A 时,COD 值从 70% 增加到 98%。使用铁电极(10 分钟)对 COD 的去除率达到 86%,而使用铝电极(2.5 电流强度)(45 分钟后)对 COD 的去除率达到 99%。研究还发现,两种电极(铝电极和铁电极)对 COD 的 P 值均大于 0.05,对 TSS 的 P 值均小于 0.05。研究结果还证实,在降低 TSS 方面存在显著差异,而在 COD 方面不存在显著差异。总之,该研究强调了使用铝电极和铁电极电凝去除淡水中化学污染物的性能,突出了其作为一种可持续和适应性强的解决方案在水处理装置中应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Treatment of contaminated river water by batch electrocoagulation system using aluminium and iron electrodes: Performance of process and statistical analysis

This study examines the reduction efficiency of chemical pollution of freshwater by electrocoagulation (EC) process using aluminium (Al) and iron (Fe) electrodes. Several parameters affecting the EC efficiency were investigated in batch manner. Results indicate that both Al and Fe electrodes can eliminate satisfactorily the chemical pollutants of water. The Fe/Fe pair electrode showed an excellent efficiency in reducing turbidity (≈ 99%) within 30 min of time and at 3.0 A intensity. The COD value increased from 62 to 65% with current intensity from 0.3 to 1.0, and from 70 to 98% following the increase in intensity from 2.0 to 3.0A by using the Al electrode. The removal of COD reached 86% with Fe electrode (for 10 min) while it was 99% with Al electrode (after 45 min) using Al electrode (at 2.5 intensity). It was also found that the P value is greater than 0.05 for COD and less than 0.05 for TSS with both electrodes (Al, Fe). The finding also confirmed that the significant difference exists in the case of TSS reduction and it does not exist in the case of COD. Overall, the study underscores the performance of electrocoagulation using both Al and Fe electrodes for removing chemical pollutants in freshwater, highlighting its potential as a sustainable and adaptable solution for their application in water treatment units.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1