{"title":"改良陆生苔藓对六价铬的生物吸附:实验、动力学和等温线研究","authors":"Feride Ulu","doi":"10.1007/s11270-024-07479-6","DOIUrl":null,"url":null,"abstract":"<div><p>In this research, activated carbon was prepared from terrestrial moss and utilized as a low-cost adsorbent to remove hexavalent chromium [Cr(VI)] from aqueous solution. The study examined important biosorption factors including initial pH (1–3), contact time (0.5–24 h), initial Cr(VI) concentration (20–400 mg/L), and biosorbent dosage (0.05–0.4 g) to assess their impact on the efficiency of modified terrestrial moss (MAC) in eliminating Cr(VI) from water. The biosorbent capacity was evaluated using different kinetic models and isotherms. The highest removal efficiency of Cr(VI) onto MAC was ascertained as 97.8% at an initial solution pH of 1, MAC dose of 0.2 g, initial Cr(VI) concentration of 50 mg. L<sup>−1</sup>, and contact time of 15 h. The FTIR analysis revealed the interactions of certain functional groups in the adsorption of chromium ions. The biosorption occurred through the anionic adsorption mechanism and followed the pseudo-second order kinetic model. The experimental data was best fitted with Freundlich isotherm. Furthermore, the thermodynamic studies suggest that the biosorption process is both spontaneous and exothermic. The positive entropy change implied the randomness at the solid–liquid interface. In light of these compelling results, the study recommends the consideration of MAC as an efficient and practical solution for the removal of Cr (VI) from aqueous environments.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biosorption of Hexavalent Chromium Over Modified Terrestrial Moss: Experimental, Kinetic, and Isotherm Studies\",\"authors\":\"Feride Ulu\",\"doi\":\"10.1007/s11270-024-07479-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this research, activated carbon was prepared from terrestrial moss and utilized as a low-cost adsorbent to remove hexavalent chromium [Cr(VI)] from aqueous solution. The study examined important biosorption factors including initial pH (1–3), contact time (0.5–24 h), initial Cr(VI) concentration (20–400 mg/L), and biosorbent dosage (0.05–0.4 g) to assess their impact on the efficiency of modified terrestrial moss (MAC) in eliminating Cr(VI) from water. The biosorbent capacity was evaluated using different kinetic models and isotherms. The highest removal efficiency of Cr(VI) onto MAC was ascertained as 97.8% at an initial solution pH of 1, MAC dose of 0.2 g, initial Cr(VI) concentration of 50 mg. L<sup>−1</sup>, and contact time of 15 h. The FTIR analysis revealed the interactions of certain functional groups in the adsorption of chromium ions. The biosorption occurred through the anionic adsorption mechanism and followed the pseudo-second order kinetic model. The experimental data was best fitted with Freundlich isotherm. Furthermore, the thermodynamic studies suggest that the biosorption process is both spontaneous and exothermic. The positive entropy change implied the randomness at the solid–liquid interface. In light of these compelling results, the study recommends the consideration of MAC as an efficient and practical solution for the removal of Cr (VI) from aqueous environments.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07479-6\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07479-6","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Biosorption of Hexavalent Chromium Over Modified Terrestrial Moss: Experimental, Kinetic, and Isotherm Studies
In this research, activated carbon was prepared from terrestrial moss and utilized as a low-cost adsorbent to remove hexavalent chromium [Cr(VI)] from aqueous solution. The study examined important biosorption factors including initial pH (1–3), contact time (0.5–24 h), initial Cr(VI) concentration (20–400 mg/L), and biosorbent dosage (0.05–0.4 g) to assess their impact on the efficiency of modified terrestrial moss (MAC) in eliminating Cr(VI) from water. The biosorbent capacity was evaluated using different kinetic models and isotherms. The highest removal efficiency of Cr(VI) onto MAC was ascertained as 97.8% at an initial solution pH of 1, MAC dose of 0.2 g, initial Cr(VI) concentration of 50 mg. L−1, and contact time of 15 h. The FTIR analysis revealed the interactions of certain functional groups in the adsorption of chromium ions. The biosorption occurred through the anionic adsorption mechanism and followed the pseudo-second order kinetic model. The experimental data was best fitted with Freundlich isotherm. Furthermore, the thermodynamic studies suggest that the biosorption process is both spontaneous and exothermic. The positive entropy change implied the randomness at the solid–liquid interface. In light of these compelling results, the study recommends the consideration of MAC as an efficient and practical solution for the removal of Cr (VI) from aqueous environments.
期刊介绍:
Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments.
Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation.
Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.