基于 MDT-MVMD 的光伏储能系统频率调制技术

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Power Electronics Pub Date : 2024-09-03 DOI:10.1007/s43236-024-00895-1
Dongdong Li, Hao Chen, Yin Yao, David Wenzhong Gao, Bo Xu
{"title":"基于 MDT-MVMD 的光伏储能系统频率调制技术","authors":"Dongdong Li, Hao Chen, Yin Yao, David Wenzhong Gao, Bo Xu","doi":"10.1007/s43236-024-00895-1","DOIUrl":null,"url":null,"abstract":"<p>Due to the rapid advances in renewable energy technologies, the growing integration of renewable sources has led to reduced resources for Fast Frequency Response (FFR) in power systems, challenging frequency stability. Photovoltaic (PV) plants are a key component of clean energy. To enable PV plants to contribute to FFR, a hybrid energy system is the most favorable candidate, and its power sharing algorithm significantly influences the FFR capability of PV plants. In this study, a model is established for a Virtual Synchronous Generator Hybrid Energy Storage System (VSG HESS). In addition, the mechanism by which PV plants participate in fast frequency regulation is analyzed. Subsequently, a novel multi-dimensional time filtering algorithm is proposed to overcome the problems associated with the short frequency sampling periods and insufficient measurement data in PV plants. Specifically, the techniques of Multi-Delay embedding Transform (MDT), Tucker decomposition, and Multivariate Variational Modal Decomposition (MVMD) are integrated into a unified framework for improved frequency resolution prior to frequency division. Finally, the effectiveness of the proposed method is validated through online simulations performed on a VSG-controlled PV storage microgrid platform. Simulation results reveal that the proposed method is able to outperform conventional filtering algorithms in terms of frequency division accuracy and calculation speed.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MDT-MVMD-based frequency modulation for photovoltaic energy storage systems\",\"authors\":\"Dongdong Li, Hao Chen, Yin Yao, David Wenzhong Gao, Bo Xu\",\"doi\":\"10.1007/s43236-024-00895-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Due to the rapid advances in renewable energy technologies, the growing integration of renewable sources has led to reduced resources for Fast Frequency Response (FFR) in power systems, challenging frequency stability. Photovoltaic (PV) plants are a key component of clean energy. To enable PV plants to contribute to FFR, a hybrid energy system is the most favorable candidate, and its power sharing algorithm significantly influences the FFR capability of PV plants. In this study, a model is established for a Virtual Synchronous Generator Hybrid Energy Storage System (VSG HESS). In addition, the mechanism by which PV plants participate in fast frequency regulation is analyzed. Subsequently, a novel multi-dimensional time filtering algorithm is proposed to overcome the problems associated with the short frequency sampling periods and insufficient measurement data in PV plants. Specifically, the techniques of Multi-Delay embedding Transform (MDT), Tucker decomposition, and Multivariate Variational Modal Decomposition (MVMD) are integrated into a unified framework for improved frequency resolution prior to frequency division. Finally, the effectiveness of the proposed method is validated through online simulations performed on a VSG-controlled PV storage microgrid platform. Simulation results reveal that the proposed method is able to outperform conventional filtering algorithms in terms of frequency division accuracy and calculation speed.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00895-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00895-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

由于可再生能源技术的快速发展,可再生能源的集成度越来越高,导致电力系统中用于快速频率响应(FFR)的资源减少,给频率稳定性带来了挑战。光伏电站是清洁能源的重要组成部分。为使光伏电站对频率响应做出贡献,混合能源系统是最有利的选择,其功率共享算法对光伏电站的频率响应能力有显著影响。本研究建立了虚拟同步发电机混合储能系统(VSG HESS)的模型。此外,还分析了光伏电站参与快速频率调节的机制。随后,提出了一种新颖的多维时间滤波算法,以克服与光伏电站频率采样周期短和测量数据不足有关的问题。具体来说,多延迟嵌入变换 (MDT)、塔克分解和多变量模态分解 (MVMD) 等技术被整合到一个统一的框架中,以提高频率划分前的频率分辨率。最后,通过在 VSG 控制的光伏储能微电网平台上进行在线仿真,验证了所提方法的有效性。仿真结果表明,所提出的方法在分频精度和计算速度方面都优于传统的滤波算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MDT-MVMD-based frequency modulation for photovoltaic energy storage systems

Due to the rapid advances in renewable energy technologies, the growing integration of renewable sources has led to reduced resources for Fast Frequency Response (FFR) in power systems, challenging frequency stability. Photovoltaic (PV) plants are a key component of clean energy. To enable PV plants to contribute to FFR, a hybrid energy system is the most favorable candidate, and its power sharing algorithm significantly influences the FFR capability of PV plants. In this study, a model is established for a Virtual Synchronous Generator Hybrid Energy Storage System (VSG HESS). In addition, the mechanism by which PV plants participate in fast frequency regulation is analyzed. Subsequently, a novel multi-dimensional time filtering algorithm is proposed to overcome the problems associated with the short frequency sampling periods and insufficient measurement data in PV plants. Specifically, the techniques of Multi-Delay embedding Transform (MDT), Tucker decomposition, and Multivariate Variational Modal Decomposition (MVMD) are integrated into a unified framework for improved frequency resolution prior to frequency division. Finally, the effectiveness of the proposed method is validated through online simulations performed on a VSG-controlled PV storage microgrid platform. Simulation results reveal that the proposed method is able to outperform conventional filtering algorithms in terms of frequency division accuracy and calculation speed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Electronics
Journal of Power Electronics 工程技术-工程:电子与电气
CiteScore
2.30
自引率
21.40%
发文量
195
审稿时长
3.6 months
期刊介绍: The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.
期刊最新文献
Design of DC bus voltage high dynamic performance control for single-phase converters Parallel connected triple-active-bridge converters with current and voltage balancing coupled inductor for bipolar DC distribution Modelling of SiC MOSFET power devices incorporating physical effects Self-decoupled coupler based dual-coupled LCC-LCC rotating wireless power transfer system with enhanced output power Fault location and type identification method for current and voltage sensors in traction rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1