Weihao Lu, Sheng Li, Ran Ye, Weixiong Mao, Zikang Zhang, Yanfeng Ma, Mingfei Li, Jiaxing Wei, Long Zhang, Jie Ma, Siyang Liu, Weifeng Sun
{"title":"对用于 p-GaN HEMT 结温检测的峰值导通电流斜率法稳健性的研究","authors":"Weihao Lu, Sheng Li, Ran Ye, Weixiong Mao, Zikang Zhang, Yanfeng Ma, Mingfei Li, Jiaxing Wei, Long Zhang, Jie Ma, Siyang Liu, Weifeng Sun","doi":"10.1088/1361-6641/ad68a0","DOIUrl":null,"url":null,"abstract":"In this paper, the robustness of a junction temperature sensing method using the peak of the turn-on current slope for enhanced p-GaN high-electron-mobility transistors is investigated in detail. With the help of a repetitive hard-switching test platform, compared to other temperature-sensitive electrical parameters, it is found that the maximum slope of the flowing current at the turn-on transition shows no trend in degradation, regardless of the applied switching stress. This parameter decreases solely with the increase in junction temperature, showing excellent temperature-dependent linearity. Furthermore, the applicability of this method to the detection of junction temperature under different external gate resistances and drain voltages is verified. The sensed junction temperatures are carried over to calculate the thermal resistance, which is also extracted by advanced thermal characterization test equipment as a reference. Therefore, based on the versatility, convenience and accuracy, the peak of the rising drain current slope has been proven to be the preferred alternative in system applications to detect junction temperatures.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigations into the robustness of the peak turn-on current slope method for junction temperature sensing in p-GaN HEMTs\",\"authors\":\"Weihao Lu, Sheng Li, Ran Ye, Weixiong Mao, Zikang Zhang, Yanfeng Ma, Mingfei Li, Jiaxing Wei, Long Zhang, Jie Ma, Siyang Liu, Weifeng Sun\",\"doi\":\"10.1088/1361-6641/ad68a0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the robustness of a junction temperature sensing method using the peak of the turn-on current slope for enhanced p-GaN high-electron-mobility transistors is investigated in detail. With the help of a repetitive hard-switching test platform, compared to other temperature-sensitive electrical parameters, it is found that the maximum slope of the flowing current at the turn-on transition shows no trend in degradation, regardless of the applied switching stress. This parameter decreases solely with the increase in junction temperature, showing excellent temperature-dependent linearity. Furthermore, the applicability of this method to the detection of junction temperature under different external gate resistances and drain voltages is verified. The sensed junction temperatures are carried over to calculate the thermal resistance, which is also extracted by advanced thermal characterization test equipment as a reference. Therefore, based on the versatility, convenience and accuracy, the peak of the rising drain current slope has been proven to be the preferred alternative in system applications to detect junction temperatures.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad68a0\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad68a0","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Investigations into the robustness of the peak turn-on current slope method for junction temperature sensing in p-GaN HEMTs
In this paper, the robustness of a junction temperature sensing method using the peak of the turn-on current slope for enhanced p-GaN high-electron-mobility transistors is investigated in detail. With the help of a repetitive hard-switching test platform, compared to other temperature-sensitive electrical parameters, it is found that the maximum slope of the flowing current at the turn-on transition shows no trend in degradation, regardless of the applied switching stress. This parameter decreases solely with the increase in junction temperature, showing excellent temperature-dependent linearity. Furthermore, the applicability of this method to the detection of junction temperature under different external gate resistances and drain voltages is verified. The sensed junction temperatures are carried over to calculate the thermal resistance, which is also extracted by advanced thermal characterization test equipment as a reference. Therefore, based on the versatility, convenience and accuracy, the peak of the rising drain current slope has been proven to be the preferred alternative in system applications to detect junction temperatures.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.