Zhen Wang, Peng Jin, Pengfei Qu, Dunzhou Xu, Xiaodi Huo, Ju Wu and Zhanguo Wang
{"title":"氮和镓共掺杂氮型金刚石的 ab initio 研究","authors":"Zhen Wang, Peng Jin, Pengfei Qu, Dunzhou Xu, Xiaodi Huo, Ju Wu and Zhanguo Wang","doi":"10.1088/1361-6641/ad7673","DOIUrl":null,"url":null,"abstract":"In order to better understand the influence of different complexes on the diamond co-doping system, N and Ga are chosen as co-dopants in diamond. The properties of several substitutional NmGan complexes with vacancy (Va) in the bulk diamond have been investigated by ab initio density functional technique, including their optimized lattice structures, formation energies, binding energies and thermodynamic transition levels. The calculational results show that NmGan complexes in the donor–acceptor–donor (DAD) configuration can provide ionization energies similar to phosphorus-doped diamond. All other complexes provide deep impurity levels. For the DAD configuration, the adsorption process on the diamond surface has been studied to demonstrate the feasibility of growing diamonds containing N-Ga-N in experiments. The desired complex configuration is not uniquely present in the co-doped system. Investigating these properties of different complexes beyond NGaN provides insight into the N and Ga codoped diamond system, yielding a more comprehensive understanding of its potential and limitations. Our research ideas can also be extended to other co-doped systems and help to evaluate other potential co-dopants for diamond.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The ab initio study of n-type nitrogen and gallium co-doped diamond\",\"authors\":\"Zhen Wang, Peng Jin, Pengfei Qu, Dunzhou Xu, Xiaodi Huo, Ju Wu and Zhanguo Wang\",\"doi\":\"10.1088/1361-6641/ad7673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to better understand the influence of different complexes on the diamond co-doping system, N and Ga are chosen as co-dopants in diamond. The properties of several substitutional NmGan complexes with vacancy (Va) in the bulk diamond have been investigated by ab initio density functional technique, including their optimized lattice structures, formation energies, binding energies and thermodynamic transition levels. The calculational results show that NmGan complexes in the donor–acceptor–donor (DAD) configuration can provide ionization energies similar to phosphorus-doped diamond. All other complexes provide deep impurity levels. For the DAD configuration, the adsorption process on the diamond surface has been studied to demonstrate the feasibility of growing diamonds containing N-Ga-N in experiments. The desired complex configuration is not uniquely present in the co-doped system. Investigating these properties of different complexes beyond NGaN provides insight into the N and Ga codoped diamond system, yielding a more comprehensive understanding of its potential and limitations. Our research ideas can also be extended to other co-doped systems and help to evaluate other potential co-dopants for diamond.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6641/ad7673\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6641/ad7673","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了更好地了解不同配合物对金刚石共掺杂体系的影响,我们选择 N 和 Ga 作为金刚石中的共掺杂剂。研究人员利用 ab initio 密度泛函技术研究了大块金刚石中具有空位(Va)的几种取代型 NmGan 复合物的性质,包括它们的优化晶格结构、形成能、结合能和热力学转变水平。计算结果表明,供体-受体-供体(DAD)构型的 NmGan 复合物可提供与掺磷金刚石相似的电离能。所有其他络合物都能提供较深的杂质水平。对于 DAD 构型,我们研究了金刚石表面的吸附过程,以证明在实验中生长含有 N-Ga-N 的金刚石的可行性。在共掺杂体系中,所需的络合物构型并不是唯一存在的。研究 NGaN 以外不同复合物的这些特性,有助于深入了解 N 和 Ga 共掺杂金刚石体系,从而更全面地了解其潜力和局限性。我们的研究思路还可扩展到其他共掺杂体系,并有助于评估金刚石的其他潜在共掺杂剂。
The ab initio study of n-type nitrogen and gallium co-doped diamond
In order to better understand the influence of different complexes on the diamond co-doping system, N and Ga are chosen as co-dopants in diamond. The properties of several substitutional NmGan complexes with vacancy (Va) in the bulk diamond have been investigated by ab initio density functional technique, including their optimized lattice structures, formation energies, binding energies and thermodynamic transition levels. The calculational results show that NmGan complexes in the donor–acceptor–donor (DAD) configuration can provide ionization energies similar to phosphorus-doped diamond. All other complexes provide deep impurity levels. For the DAD configuration, the adsorption process on the diamond surface has been studied to demonstrate the feasibility of growing diamonds containing N-Ga-N in experiments. The desired complex configuration is not uniquely present in the co-doped system. Investigating these properties of different complexes beyond NGaN provides insight into the N and Ga codoped diamond system, yielding a more comprehensive understanding of its potential and limitations. Our research ideas can also be extended to other co-doped systems and help to evaluate other potential co-dopants for diamond.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.