光伏并网级联 H 桥逆变器的新型排序 PWM 策略与控制

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Power Electronics Pub Date : 2024-09-06 DOI:10.1007/s43236-024-00902-5
Gudipati Maheswari, K Manjunatha Sharma, Prajof Prabhakaran
{"title":"光伏并网级联 H 桥逆变器的新型排序 PWM 策略与控制","authors":"Gudipati Maheswari, K Manjunatha Sharma, Prajof Prabhakaran","doi":"10.1007/s43236-024-00902-5","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes a novel sorted level-shifted U-shaped carrier-based pulse width modulation (SLSUC PWM) strategy combined with an input power control approach for a 13-level cascaded H-bridge multi-level inverter designed for grid connection, specifically tailored for photovoltaic (PV) systems, which avoids a double-stage power conversion configuration. In this methodology, every inverter generates a quasi-square output voltage waveform with a width that is intricately linked to the output power of its corresponding PV panel. The application of this SLSUC pulse width modulation technique with input power control in a solar energy-based 13-level grid-tied inverter facilitates precise maximum power point (MPP) tracking for each of the PV panels under uniform and non-uniform irradiation conditions and ensures the consistent maintenance of capacitor voltage balance. Moreover, this novel SLSUC PWM method for 13-level inverters offers a range of benefits, including a low total harmonic distortion (THD) in the output voltage of the multi-level inverter and higher inverter and MPPT efficiencies over the existing PWM techniques. To verify the efficacy of the proposed control method over existing techniques, a PV-based grid-connected multi-level inverter with the proposed control strategy undergoes modeling and simulation using MATLAB/Simulink. Then, experimental hardware-in-the-loop (EHIL) testing is conducted to confirm and evaluate its effectiveness.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"13 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel sorted PWM strategy and control for photovoltaic-based grid-connected cascaded H-bridge inverters\",\"authors\":\"Gudipati Maheswari, K Manjunatha Sharma, Prajof Prabhakaran\",\"doi\":\"10.1007/s43236-024-00902-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper proposes a novel sorted level-shifted U-shaped carrier-based pulse width modulation (SLSUC PWM) strategy combined with an input power control approach for a 13-level cascaded H-bridge multi-level inverter designed for grid connection, specifically tailored for photovoltaic (PV) systems, which avoids a double-stage power conversion configuration. In this methodology, every inverter generates a quasi-square output voltage waveform with a width that is intricately linked to the output power of its corresponding PV panel. The application of this SLSUC pulse width modulation technique with input power control in a solar energy-based 13-level grid-tied inverter facilitates precise maximum power point (MPP) tracking for each of the PV panels under uniform and non-uniform irradiation conditions and ensures the consistent maintenance of capacitor voltage balance. Moreover, this novel SLSUC PWM method for 13-level inverters offers a range of benefits, including a low total harmonic distortion (THD) in the output voltage of the multi-level inverter and higher inverter and MPPT efficiencies over the existing PWM techniques. To verify the efficacy of the proposed control method over existing techniques, a PV-based grid-connected multi-level inverter with the proposed control strategy undergoes modeling and simulation using MATLAB/Simulink. Then, experimental hardware-in-the-loop (EHIL) testing is conducted to confirm and evaluate its effectiveness.</p>\",\"PeriodicalId\":50081,\"journal\":{\"name\":\"Journal of Power Electronics\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43236-024-00902-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00902-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖的排序电平偏移 U 型载波脉宽调制(SLSUC PWM)策略,该策略与输入功率控制方法相结合,适用于专为光伏(PV)系统设计的并网用 13 级级联 H 桥多电平逆变器,避免了双级功率转换配置。在这种方法中,每个逆变器都会产生一个准方波输出电压波形,其宽度与相应光伏板的输出功率密切相关。在基于太阳能的 13 级并网逆变器中应用这种具有输入功率控制功能的 SLSUC 脉宽调制技术,有助于在均匀和非均匀辐照条件下精确跟踪每个光伏板的最大功率点 (MPP),并确保持续维持电容器电压平衡。此外,这种用于 13 电平逆变器的新型 SLSUC PWM 方法还具有一系列优点,包括多电平逆变器输出电压的总谐波失真(THD)低,逆变器和 MPPT 效率高于现有的 PWM 技术。为验证所提控制方法相对于现有技术的有效性,使用 MATLAB/Simulink 对采用所提控制策略的光伏并网多级逆变器进行了建模和仿真。然后,进行了硬件在环(EHIL)实验测试,以确认和评估其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel sorted PWM strategy and control for photovoltaic-based grid-connected cascaded H-bridge inverters

This paper proposes a novel sorted level-shifted U-shaped carrier-based pulse width modulation (SLSUC PWM) strategy combined with an input power control approach for a 13-level cascaded H-bridge multi-level inverter designed for grid connection, specifically tailored for photovoltaic (PV) systems, which avoids a double-stage power conversion configuration. In this methodology, every inverter generates a quasi-square output voltage waveform with a width that is intricately linked to the output power of its corresponding PV panel. The application of this SLSUC pulse width modulation technique with input power control in a solar energy-based 13-level grid-tied inverter facilitates precise maximum power point (MPP) tracking for each of the PV panels under uniform and non-uniform irradiation conditions and ensures the consistent maintenance of capacitor voltage balance. Moreover, this novel SLSUC PWM method for 13-level inverters offers a range of benefits, including a low total harmonic distortion (THD) in the output voltage of the multi-level inverter and higher inverter and MPPT efficiencies over the existing PWM techniques. To verify the efficacy of the proposed control method over existing techniques, a PV-based grid-connected multi-level inverter with the proposed control strategy undergoes modeling and simulation using MATLAB/Simulink. Then, experimental hardware-in-the-loop (EHIL) testing is conducted to confirm and evaluate its effectiveness.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Electronics
Journal of Power Electronics 工程技术-工程:电子与电气
CiteScore
2.30
自引率
21.40%
发文量
195
审稿时长
3.6 months
期刊介绍: The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.
期刊最新文献
Design of DC bus voltage high dynamic performance control for single-phase converters Parallel connected triple-active-bridge converters with current and voltage balancing coupled inductor for bipolar DC distribution Modelling of SiC MOSFET power devices incorporating physical effects Self-decoupled coupler based dual-coupled LCC-LCC rotating wireless power transfer system with enhanced output power Fault location and type identification method for current and voltage sensors in traction rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1