在同态加密中利用 GPU:框架设计与 BFV 变种分析

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-09-11 DOI:10.1109/TC.2024.3457733
Shiyu Shen;Hao Yang;Wangchen Dai;Lu Zhou;Zhe Liu;Yunlei Zhao
{"title":"在同态加密中利用 GPU:框架设计与 BFV 变种分析","authors":"Shiyu Shen;Hao Yang;Wangchen Dai;Lu Zhou;Zhe Liu;Yunlei Zhao","doi":"10.1109/TC.2024.3457733","DOIUrl":null,"url":null,"abstract":"Homomorphic Encryption (HE) enhances data security by enabling computations on encrypted data, advancing privacy-focused computations. The BFV scheme, a promising HE scheme, raises considerable performance challenges. Graphics Processing Units (GPUs), with considerable parallel processing abilities, offer an effective solution. In this work, we present an in-depth study on accelerating and comparing BFV variants on GPUs, including Bajard-Eynard-Hasan-Zucca (BEHZ), Halevi-Polyakov-Shoup (HPS), and recent variants. We introduce a universal framework for all variants, propose optimized BEHZ implementation, and first support HPS variants with large parameter sets on GPUs. We also optimize low-level arithmetic and high-level operations, minimizing instructions for modular operations, enhancing hardware utilization for base conversion, and implementing efficient reuse strategies and fusion methods to reduce computational and memory consumption. Leveraging our framework, we offer comprehensive comparative analyses. Performance evaluation shows a 31.9\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n speedup over OpenFHE running on a multi-threaded CPU and 39.7% and 29.9% improvement for tensoring and relinearization over the state-of-the-art GPU BEHZ implementation. The leveled HPS variant records up to 4\n<inline-formula><tex-math>$\\times$</tex-math></inline-formula>\n speedup over other variants, positioning it as a highly promising alternative for specific applications.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 12","pages":"2817-2829"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants\",\"authors\":\"Shiyu Shen;Hao Yang;Wangchen Dai;Lu Zhou;Zhe Liu;Yunlei Zhao\",\"doi\":\"10.1109/TC.2024.3457733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Homomorphic Encryption (HE) enhances data security by enabling computations on encrypted data, advancing privacy-focused computations. The BFV scheme, a promising HE scheme, raises considerable performance challenges. Graphics Processing Units (GPUs), with considerable parallel processing abilities, offer an effective solution. In this work, we present an in-depth study on accelerating and comparing BFV variants on GPUs, including Bajard-Eynard-Hasan-Zucca (BEHZ), Halevi-Polyakov-Shoup (HPS), and recent variants. We introduce a universal framework for all variants, propose optimized BEHZ implementation, and first support HPS variants with large parameter sets on GPUs. We also optimize low-level arithmetic and high-level operations, minimizing instructions for modular operations, enhancing hardware utilization for base conversion, and implementing efficient reuse strategies and fusion methods to reduce computational and memory consumption. Leveraging our framework, we offer comprehensive comparative analyses. Performance evaluation shows a 31.9\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n speedup over OpenFHE running on a multi-threaded CPU and 39.7% and 29.9% improvement for tensoring and relinearization over the state-of-the-art GPU BEHZ implementation. The leveled HPS variant records up to 4\\n<inline-formula><tex-math>$\\\\times$</tex-math></inline-formula>\\n speedup over other variants, positioning it as a highly promising alternative for specific applications.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 12\",\"pages\":\"2817-2829\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10677364/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10677364/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

同态加密(HE)通过在加密数据上进行计算,提高了数据的安全性,推进了以隐私为重点的计算。BFV 方案是一种很有前途的 HE 方案,但它在性能上面临相当大的挑战。具有强大并行处理能力的图形处理器(GPU)提供了一个有效的解决方案。在这项工作中,我们深入研究了如何在 GPU 上加速和比较 BFV 变体,包括 Bajard-Eynard-Hasan-Zucca (BEHZ)、Halevi-Polyakov-Shoup (HPS) 和最近的变体。我们为所有变体引入了一个通用框架,提出了经过优化的 BEHZ 实现方法,并首次支持在 GPU 上使用大型参数集的 HPS 变体。我们还优化了底层算术和高层操作,最大限度地减少了模块化操作指令,提高了基数转换的硬件利用率,并实施了高效的重用策略和融合方法,以减少计算和内存消耗。利用我们的框架,我们提供了全面的比较分析。性能评估显示,与运行在多线程CPU上的OpenFHE相比,速度提高了31.9美元/次,与最先进的GPU BEHZ实现相比,张化和重线性分别提高了39.7%和29.9%。与其他变体相比,平移 HPS 变体的速度提高了 4 美元/次,使其成为特定应用中极具潜力的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
Homomorphic Encryption (HE) enhances data security by enabling computations on encrypted data, advancing privacy-focused computations. The BFV scheme, a promising HE scheme, raises considerable performance challenges. Graphics Processing Units (GPUs), with considerable parallel processing abilities, offer an effective solution. In this work, we present an in-depth study on accelerating and comparing BFV variants on GPUs, including Bajard-Eynard-Hasan-Zucca (BEHZ), Halevi-Polyakov-Shoup (HPS), and recent variants. We introduce a universal framework for all variants, propose optimized BEHZ implementation, and first support HPS variants with large parameter sets on GPUs. We also optimize low-level arithmetic and high-level operations, minimizing instructions for modular operations, enhancing hardware utilization for base conversion, and implementing efficient reuse strategies and fusion methods to reduce computational and memory consumption. Leveraging our framework, we offer comprehensive comparative analyses. Performance evaluation shows a 31.9 $\times$ speedup over OpenFHE running on a multi-threaded CPU and 39.7% and 29.9% improvement for tensoring and relinearization over the state-of-the-art GPU BEHZ implementation. The leveled HPS variant records up to 4 $\times$ speedup over other variants, positioning it as a highly promising alternative for specific applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
CUSPX: Efficient GPU Implementations of Post-Quantum Signature SPHINCS+ Chiplet-Gym: Optimizing Chiplet-based AI Accelerator Design with Reinforcement Learning FLALM: A Flexible Low Area-Latency Montgomery Modular Multiplication on FPGA Novel Lagrange Multipliers-Driven Adaptive Offloading for Vehicular Edge Computing Leveraging GPU in Homomorphic Encryption: Framework Design and Analysis of BFV Variants
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1