PruneAug:利用自动分层块剪枝技术在多种稀疏平台上弥合 DNN 修剪和推理延迟问题

IF 3.6 2区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computers Pub Date : 2024-08-12 DOI:10.1109/TC.2024.3441855
Hanfei Geng;Yifei Liu;Yujie Zheng;Li Lyna Zhang;Jingwei Sun;Yujing Wang;Yang Wang;Guangzhong Sun;Mao Yang;Ting Cao;Yunxin Liu
{"title":"PruneAug:利用自动分层块剪枝技术在多种稀疏平台上弥合 DNN 修剪和推理延迟问题","authors":"Hanfei Geng;Yifei Liu;Yujie Zheng;Li Lyna Zhang;Jingwei Sun;Yujing Wang;Yang Wang;Guangzhong Sun;Mao Yang;Ting Cao;Yunxin Liu","doi":"10.1109/TC.2024.3441855","DOIUrl":null,"url":null,"abstract":"Although pruning is an effective technique to reduce the number of weights in deep neural networks (DNNs), it remains challenging for the resulting sparse networks to perform low-latency inference on everyday hardware. This problem is mainly caused by the incompatibility between the unstructured sparsity adopted for accuracy preservation and the sparse platform's (the combination of sparse kernel library and the underlying hardware) expectation of regular sparse patterns. In order to resolve this conflict, we propose PruneAug, an augmentation over existing unstructured pruning methods that finds block-sparse networks with much lower latency but preserves the accuracy. The fundamental idea of PruneAug is to prune the network with a layerwise block dimension assignment in a platform-aware fashion. Subject to an accuracy-loss constraint, PruneAug minimizes the latency of the block sparse network by jointly optimizing this layerwise block dimension assignment and the network's sparsity level. Admittedly, this approach expands the solution space. To curb our search cost, we include multiple optimizations while designing PruneAug's search space and strategy. Our evaluation over diverse pruning methods, DNNs, datasets, and sparse platforms shows that PruneAug enables different pruning methods to achieve speedup (as much as \n<inline-formula><tex-math>$\\boldsymbol{\\sim}13\\boldsymbol{\\times}$</tex-math></inline-formula>\n depending on the platform) while maintaining competitive accuracy relative to unstructured sparsity, extracting the full potential of sparse platforms.","PeriodicalId":13087,"journal":{"name":"IEEE Transactions on Computers","volume":"73 11","pages":"2576-2589"},"PeriodicalIF":3.6000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PruneAug: Bridging DNN Pruning and Inference Latency on Diverse Sparse Platforms Using Automatic Layerwise Block Pruning\",\"authors\":\"Hanfei Geng;Yifei Liu;Yujie Zheng;Li Lyna Zhang;Jingwei Sun;Yujing Wang;Yang Wang;Guangzhong Sun;Mao Yang;Ting Cao;Yunxin Liu\",\"doi\":\"10.1109/TC.2024.3441855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although pruning is an effective technique to reduce the number of weights in deep neural networks (DNNs), it remains challenging for the resulting sparse networks to perform low-latency inference on everyday hardware. This problem is mainly caused by the incompatibility between the unstructured sparsity adopted for accuracy preservation and the sparse platform's (the combination of sparse kernel library and the underlying hardware) expectation of regular sparse patterns. In order to resolve this conflict, we propose PruneAug, an augmentation over existing unstructured pruning methods that finds block-sparse networks with much lower latency but preserves the accuracy. The fundamental idea of PruneAug is to prune the network with a layerwise block dimension assignment in a platform-aware fashion. Subject to an accuracy-loss constraint, PruneAug minimizes the latency of the block sparse network by jointly optimizing this layerwise block dimension assignment and the network's sparsity level. Admittedly, this approach expands the solution space. To curb our search cost, we include multiple optimizations while designing PruneAug's search space and strategy. Our evaluation over diverse pruning methods, DNNs, datasets, and sparse platforms shows that PruneAug enables different pruning methods to achieve speedup (as much as \\n<inline-formula><tex-math>$\\\\boldsymbol{\\\\sim}13\\\\boldsymbol{\\\\times}$</tex-math></inline-formula>\\n depending on the platform) while maintaining competitive accuracy relative to unstructured sparsity, extracting the full potential of sparse platforms.\",\"PeriodicalId\":13087,\"journal\":{\"name\":\"IEEE Transactions on Computers\",\"volume\":\"73 11\",\"pages\":\"2576-2589\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computers\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10633894/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computers","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10633894/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

尽管剪枝是减少深度神经网络(DNN)中权重数量的有效技术,但由此产生的稀疏网络要在日常硬件上执行低延迟推理仍具有挑战性。造成这一问题的主要原因是,为保持准确性而采用的非结构稀疏性与稀疏平台(稀疏内核库与底层硬件的组合)对规则稀疏模式的期望之间不兼容。为了解决这一矛盾,我们提出了 PruneAug,它是对现有非结构化剪枝方法的一种增强,能以更低的延迟找到块稀疏网络,同时保持准确性。PruneAug 的基本思想是以平台感知的方式,通过按层分配块维度来剪枝网络。在精度损失约束条件下,PruneAug 通过联合优化层向块维度分配和网络的稀疏程度,最大限度地降低了块稀疏网络的延迟。诚然,这种方法扩大了求解空间。为了降低搜索成本,我们在设计 PruneAug 的搜索空间和策略时进行了多重优化。我们对不同的剪枝方法、DNN、数据集和稀疏平台进行的评估表明,PruneAug 可以让不同的剪枝方法实现提速(根据平台的不同,可提速多达 $\boldsymbol\{sim}13\boldsymbol{times}$ ),同时保持相对于非结构化稀疏性的具有竞争力的准确性,充分挖掘稀疏平台的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PruneAug: Bridging DNN Pruning and Inference Latency on Diverse Sparse Platforms Using Automatic Layerwise Block Pruning
Although pruning is an effective technique to reduce the number of weights in deep neural networks (DNNs), it remains challenging for the resulting sparse networks to perform low-latency inference on everyday hardware. This problem is mainly caused by the incompatibility between the unstructured sparsity adopted for accuracy preservation and the sparse platform's (the combination of sparse kernel library and the underlying hardware) expectation of regular sparse patterns. In order to resolve this conflict, we propose PruneAug, an augmentation over existing unstructured pruning methods that finds block-sparse networks with much lower latency but preserves the accuracy. The fundamental idea of PruneAug is to prune the network with a layerwise block dimension assignment in a platform-aware fashion. Subject to an accuracy-loss constraint, PruneAug minimizes the latency of the block sparse network by jointly optimizing this layerwise block dimension assignment and the network's sparsity level. Admittedly, this approach expands the solution space. To curb our search cost, we include multiple optimizations while designing PruneAug's search space and strategy. Our evaluation over diverse pruning methods, DNNs, datasets, and sparse platforms shows that PruneAug enables different pruning methods to achieve speedup (as much as $\boldsymbol{\sim}13\boldsymbol{\times}$ depending on the platform) while maintaining competitive accuracy relative to unstructured sparsity, extracting the full potential of sparse platforms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Computers
IEEE Transactions on Computers 工程技术-工程:电子与电气
CiteScore
6.60
自引率
5.40%
发文量
199
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Computers is a monthly publication with a wide distribution to researchers, developers, technical managers, and educators in the computer field. It publishes papers on research in areas of current interest to the readers. These areas include, but are not limited to, the following: a) computer organizations and architectures; b) operating systems, software systems, and communication protocols; c) real-time systems and embedded systems; d) digital devices, computer components, and interconnection networks; e) specification, design, prototyping, and testing methods and tools; f) performance, fault tolerance, reliability, security, and testability; g) case studies and experimental and theoretical evaluations; and h) new and important applications and trends.
期刊最新文献
2024 Reviewers List Mix-GEMM: Extending RISC-V CPUs for Energy-Efficient Mixed-Precision DNN Inference Using Binary Segmentation COSMO: COmpressed Sensing for Models and Logging Optimization in MCU Performance Screening NetMod: Toward Accelerating Cloud RAN Distributed Unit Modulation Within Programmable Switches Shared Recurrence Floating-Point Divide/Sqrt and Integer Divide/Remainder With Early Termination
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1