神经密度函数:局部学习和配对相关匹配

IF 2.4 3区 物理与天体物理 Q1 Mathematics Physical review. E Pub Date : 2024-09-12 DOI:10.1103/physreve.110.l032601
Florian Sammüller, Matthias Schmidt
{"title":"神经密度函数:局部学习和配对相关匹配","authors":"Florian Sammüller, Matthias Schmidt","doi":"10.1103/physreve.110.l032601","DOIUrl":null,"url":null,"abstract":"Recently, Dijkman <i>et al.</i> [arXiv:2403.15007] proposed training classical neural density functionals via bulk pair-correlation matching. We show their method to be an efficient regularizer for neural functionals based on local learning of inhomogeneous one-body direct correlations [Sammüller <i>et al.</i>, <span>Proc. Natl. Acad. Sci. USA</span> <b>120</b>, e2312484120 (2023)]. While Dijkman <i>et al.</i> demonstrated pair-correlation matching of a global neural free-energy functional, we argue in favor of local one-body learning for flexible neural modeling of the full Mermin-Evans density-functional map. Using spatial localization gives access to accurate neural free-energy functionals, including convolutional neural networks, that transcend the training box.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural density functionals: Local learning and pair-correlation matching\",\"authors\":\"Florian Sammüller, Matthias Schmidt\",\"doi\":\"10.1103/physreve.110.l032601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, Dijkman <i>et al.</i> [arXiv:2403.15007] proposed training classical neural density functionals via bulk pair-correlation matching. We show their method to be an efficient regularizer for neural functionals based on local learning of inhomogeneous one-body direct correlations [Sammüller <i>et al.</i>, <span>Proc. Natl. Acad. Sci. USA</span> <b>120</b>, e2312484120 (2023)]. While Dijkman <i>et al.</i> demonstrated pair-correlation matching of a global neural free-energy functional, we argue in favor of local one-body learning for flexible neural modeling of the full Mermin-Evans density-functional map. Using spatial localization gives access to accurate neural free-energy functionals, including convolutional neural networks, that transcend the training box.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.l032601\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.l032601","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

最近,Dijkman 等人[arXiv:2403.15007] 提出通过体对相关匹配来训练经典神经密度函数。我们证明了他们的方法是一种基于非均质单体直接相关局部学习的高效神经函数正则[Sammüller 等人,Proc. Natl. Acad. Sci.Dijkman 等人展示了全局神经自由能函数的成对相关匹配,而我们则主张采用局部单体学习,以灵活建立完整 Mermin-Evans 密度函数图的神经模型。利用空间定位可以获得精确的神经自由能函数,包括超越训练盒的卷积神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural density functionals: Local learning and pair-correlation matching
Recently, Dijkman et al. [arXiv:2403.15007] proposed training classical neural density functionals via bulk pair-correlation matching. We show their method to be an efficient regularizer for neural functionals based on local learning of inhomogeneous one-body direct correlations [Sammüller et al., Proc. Natl. Acad. Sci. USA 120, e2312484120 (2023)]. While Dijkman et al. demonstrated pair-correlation matching of a global neural free-energy functional, we argue in favor of local one-body learning for flexible neural modeling of the full Mermin-Evans density-functional map. Using spatial localization gives access to accurate neural free-energy functionals, including convolutional neural networks, that transcend the training box.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical review. E
Physical review. E 物理-物理:流体与等离子体
CiteScore
4.60
自引率
16.70%
发文量
0
审稿时长
3.3 months
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
期刊最新文献
Attractive-repulsive interaction in coupled quantum oscillators Theoretical analysis of the structure, thermodynamics, and shear elasticity of deeply metastable hard sphere fluids Wakefield-driven filamentation of warm beams in plasma Erratum: General existence and determination of conjugate fields in dynamically ordered magnetic systems [Phys. Rev. E 104, 044125 (2021)] Death-birth adaptive dynamics: modeling trait evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1