{"title":"无序介质中最优路径和有向或无向聚合物的强弱无序行为交叉缩放的统一理论","authors":"Daniel Villarrubia-Moreno, Pedro Córdoba-Torres","doi":"10.1103/physreve.110.034502","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the crossover between strong disorder (SD) and weak disorder (WD) behaviors in three well-known problems that involve minimal paths: directed polymers (directed paths with fixed starting point and length), optimal paths (undirected paths with a fixed end-to-end or spanning distance), and undirected polymers (undirected paths with a fixed starting point and length). We present a unified theoretical framework from which we can easily deduce the scaling of the crossover point of each problem in an arbitrary dimension. Our theory is based on the fact that the SD limit behavior of these systems is closely related to the corresponding percolation problem. As a result, the properties of those minimal paths are completely controlled by the so-called red bonds of percolation theory. Our model is first addressed numerically and then approximated by a two-term approach. This approach provides us with an analytical expression that seems to be reasonably accurate. The results are in perfect agreement with our simulations and with most of the results reported in related works. Our research also leads us to propose this crossover point as a universal measure of the disorder strength in each case. Interestingly, that measure depends on both the statistical properties of the disorder and the topological properties of the network.","PeriodicalId":20085,"journal":{"name":"Physical review. E","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified theory for the scaling of the crossover between strong and weak disorder behaviors of optimal paths and directed or undirected polymers in disordered media\",\"authors\":\"Daniel Villarrubia-Moreno, Pedro Córdoba-Torres\",\"doi\":\"10.1103/physreve.110.034502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we are concerned with the crossover between strong disorder (SD) and weak disorder (WD) behaviors in three well-known problems that involve minimal paths: directed polymers (directed paths with fixed starting point and length), optimal paths (undirected paths with a fixed end-to-end or spanning distance), and undirected polymers (undirected paths with a fixed starting point and length). We present a unified theoretical framework from which we can easily deduce the scaling of the crossover point of each problem in an arbitrary dimension. Our theory is based on the fact that the SD limit behavior of these systems is closely related to the corresponding percolation problem. As a result, the properties of those minimal paths are completely controlled by the so-called red bonds of percolation theory. Our model is first addressed numerically and then approximated by a two-term approach. This approach provides us with an analytical expression that seems to be reasonably accurate. The results are in perfect agreement with our simulations and with most of the results reported in related works. Our research also leads us to propose this crossover point as a universal measure of the disorder strength in each case. Interestingly, that measure depends on both the statistical properties of the disorder and the topological properties of the network.\",\"PeriodicalId\":20085,\"journal\":{\"name\":\"Physical review. E\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review. E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physreve.110.034502\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review. E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physreve.110.034502","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Unified theory for the scaling of the crossover between strong and weak disorder behaviors of optimal paths and directed or undirected polymers in disordered media
In this paper, we are concerned with the crossover between strong disorder (SD) and weak disorder (WD) behaviors in three well-known problems that involve minimal paths: directed polymers (directed paths with fixed starting point and length), optimal paths (undirected paths with a fixed end-to-end or spanning distance), and undirected polymers (undirected paths with a fixed starting point and length). We present a unified theoretical framework from which we can easily deduce the scaling of the crossover point of each problem in an arbitrary dimension. Our theory is based on the fact that the SD limit behavior of these systems is closely related to the corresponding percolation problem. As a result, the properties of those minimal paths are completely controlled by the so-called red bonds of percolation theory. Our model is first addressed numerically and then approximated by a two-term approach. This approach provides us with an analytical expression that seems to be reasonably accurate. The results are in perfect agreement with our simulations and with most of the results reported in related works. Our research also leads us to propose this crossover point as a universal measure of the disorder strength in each case. Interestingly, that measure depends on both the statistical properties of the disorder and the topological properties of the network.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.